Stable, accurate and efficient deep neural networks for inverse problems
with analysis-sparse models
- URL: http://arxiv.org/abs/2203.00804v1
- Date: Wed, 2 Mar 2022 00:44:25 GMT
- Title: Stable, accurate and efficient deep neural networks for inverse problems
with analysis-sparse models
- Authors: Maksym Neyra-Nesterenko, Ben Adcock
- Abstract summary: We present a novel construction of an accurate, stable and efficient neural network for inverse problems with general analysis-sparse models.
To construct the network, we unroll NESTA, an accelerated first-order method for convex optimization.
A restart scheme is employed to enable exponential decay of the required network depth, yielding a shallower, and consequently more efficient, network.
- Score: 2.969705152497174
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Solving inverse problems is a fundamental component of science, engineering
and mathematics. With the advent of deep learning, deep neural networks have
significant potential to outperform existing state-of-the-art, model-based
methods for solving inverse problems. However, it is known that current
data-driven approaches face several key issues, notably instabilities and
hallucinations, with potential impact in critical tasks such as medical
imaging. This raises the key question of whether or not one can construct
stable and accurate deep neural networks for inverse problems. In this work, we
present a novel construction of an accurate, stable and efficient neural
network for inverse problems with general analysis-sparse models. To construct
the network, we unroll NESTA, an accelerated first-order method for convex
optimization. Combined with a compressed sensing analysis, we prove accuracy
and stability. Finally, a restart scheme is employed to enable exponential
decay of the required network depth, yielding a shallower, and consequently
more efficient, network. We showcase this approach in the case of Fourier
imaging, and verify its stability and performance via a series of numerical
experiments. The key impact of this work is to provide theoretical guarantees
for computing and developing stable neural networks in practice.
Related papers
- The Unreasonable Effectiveness of Solving Inverse Problems with Neural Networks [24.766470360665647]
We show that neural networks trained to learn solutions to inverse problems can find better solutions than classicals even on their training set.
Our findings suggest an alternative use for neural networks: rather than generalizing to new data for fast inference, they can also be used to find better solutions on known data.
arXiv Detail & Related papers (2024-08-15T12:38:10Z) - Message Passing Variational Autoregressive Network for Solving Intractable Ising Models [6.261096199903392]
Many deep neural networks have been used to solve Ising models, including autoregressive neural networks, convolutional neural networks, recurrent neural networks, and graph neural networks.
Here we propose a variational autoregressive architecture with a message passing mechanism, which can effectively utilize the interactions between spin variables.
The new network trained under an annealing framework outperforms existing methods in solving several prototypical Ising spin Hamiltonians, especially for larger spin systems at low temperatures.
arXiv Detail & Related papers (2024-04-09T11:27:07Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Cycle Consistency-based Uncertainty Quantification of Neural Networks in
Inverse Imaging Problems [10.992084413881592]
Uncertainty estimation is critical for numerous applications of deep neural networks.
We show an uncertainty quantification approach for deep neural networks used in inverse problems based on cycle consistency.
arXiv Detail & Related papers (2023-05-22T09:23:18Z) - Convergence Guarantees of Overparametrized Wide Deep Inverse Prior [1.5362025549031046]
Inverse Priors is an unsupervised approach to transform a random input into an object whose image under the forward model matches the observation.
We provide overparametrization bounds under which such network trained via continuous-time gradient descent will converge exponentially fast with high probability.
This work is thus a first step towards a theoretical understanding of overparametrized DIP networks, and more broadly it participates to the theoretical understanding of neural networks in inverse problem settings.
arXiv Detail & Related papers (2023-03-20T16:49:40Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - To be or not to be stable, that is the question: understanding neural
networks for inverse problems [0.0]
In this paper, we theoretically analyze the trade-off between stability and accuracy of neural networks.
We propose different supervised and unsupervised solutions to increase the network stability and maintain a good accuracy.
arXiv Detail & Related papers (2022-11-24T16:16:40Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.