The quantum low-rank approximation problem
- URL: http://arxiv.org/abs/2203.00811v1
- Date: Wed, 2 Mar 2022 01:05:01 GMT
- Title: The quantum low-rank approximation problem
- Authors: Nic Ezzell, Zo\"e Holmes, Patrick J. Coles
- Abstract summary: We consider the distance $D(rho,sigma)$ between two normalized quantum states, $rho$ and $sigma$.
We analytically solve for the optimal state $sigma$ that minimizes this distance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a quantum version of the famous low-rank approximation problem.
Specifically, we consider the distance $D(\rho,\sigma)$ between two normalized
quantum states, $\rho$ and $\sigma$, where the rank of $\sigma$ is constrained
to be at most $R$. For both the trace distance and Hilbert-Schmidt distance, we
analytically solve for the optimal state $\sigma$ that minimizes this distance.
For the Hilbert-Schmidt distance, the unique optimal state is $\sigma = \tau_R
+N_R$, where $\tau_R = \Pi_R \rho \Pi_R$ is given by projecting $\rho$ onto its
$R$ principal components with projector $\Pi_R$, and $N_R$ is a normalization
factor given by $N_R = \frac{1- \text{Tr}(\tau_R)}{R}\Pi_R$. For the trace
distance, this state is also optimal but not uniquely optimal, and we provide
the full set of states that are optimal. We briefly discuss how our results
have application for performing principal component analysis (PCA) via
variational optimization on quantum computers.
Related papers
- Sample-Optimal Quantum Estimators for Pure-State Trace Distance and Fidelity via Samplizer [7.319050391449301]
Trace distance and infidelity, as basic measures of the closeness of quantum states, are commonly used in quantum state discrimination, certification, and tomography.
We present a quantum algorithm that estimates the trace distance and square root fidelity between pure states to within additive error $varepsilon$, given sample access to their identical copies.
arXiv Detail & Related papers (2024-10-28T16:48:21Z) - Relative-Translation Invariant Wasserstein Distance [82.6068808353647]
We introduce a new family of distances, relative-translation invariant Wasserstein distances ($RW_p$)
We show that $RW_p distances are also real distance metrics defined on the quotient set $mathcalP_p(mathbbRn)/sim$ invariant to distribution translations.
arXiv Detail & Related papers (2024-09-04T03:41:44Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - A Quantum Approximation Scheme for k-Means [0.16317061277457]
We give a quantum approximation scheme for the classical $k$-means clustering problem in the QRAM model.
Our quantum algorithm runs in time $tildeO left( 2tildeO(frackvarepsilon) eta2 dright)$.
Unlike previous works on unsupervised learning, our quantum algorithm does not require quantum linear algebra subroutines.
arXiv Detail & Related papers (2023-08-16T06:46:37Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Sampling from Log-Concave Distributions with Infinity-Distance
Guarantees and Applications to Differentially Private Optimization [33.38289436686841]
We present an algorithm that outputs a point from a distributionO(varepsilon)$close to $$ in infinity-distance.
We also present a "soft-pi" version of the Dikin walk which may be independent interest.
arXiv Detail & Related papers (2021-11-07T13:44:50Z) - Gap-Dependent Unsupervised Exploration for Reinforcement Learning [40.990467706237396]
We present an efficient algorithm for task-agnostic reinforcement learning.
The algorithm takes only $widetildemathcalO (1/epsilon cdot (H3SA / rho + H4 S2 A) )$ episodes of exploration.
We show that, information-theoretically, this bound is nearly tight for $rho Theta (1/(HS))$ and $H>1$.
arXiv Detail & Related papers (2021-08-11T20:42:46Z) - SDP Achieves Exact Minimax Optimality in Phase Synchronization [19.909352968029584]
We study the phase synchronization problem with noisy measurements $Y=z*z*+sigma WinmathbbCntimes ntimes n.
We prove that SDP achieves error bound $ (1+o)fracnp22np$ under a squared $ell$ loss.
arXiv Detail & Related papers (2021-01-07T03:14:05Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z) - Agnostic Q-learning with Function Approximation in Deterministic
Systems: Tight Bounds on Approximation Error and Sample Complexity [94.37110094442136]
We study the problem of agnostic $Q$-learning with function approximation in deterministic systems.
We show that if $delta = Oleft(rho/sqrtdim_Eright)$, then one can find the optimal policy using $Oleft(dim_Eright)$.
arXiv Detail & Related papers (2020-02-17T18:41:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.