An Accelerated Stochastic Algorithm for Solving the Optimal Transport
Problem
- URL: http://arxiv.org/abs/2203.00813v3
- Date: Tue, 30 May 2023 00:15:35 GMT
- Title: An Accelerated Stochastic Algorithm for Solving the Optimal Transport
Problem
- Authors: Yiling Xie, Yiling Luo, Xiaoming Huo
- Abstract summary: A primal-dual accelerated gradient descent with variance reduction algorithm (PDASGD) is proposed to solve linear-constrained optimization problems.
PDASGD enjoys the best-known computational complexity -- $widetildemathcalO(n2/epsilon)$, where $n$ is the number of atoms, and $epsilon>0$ is the accuracy.
- Score: 2.1485350418225244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A primal-dual accelerated stochastic gradient descent with variance reduction
algorithm (PDASGD) is proposed to solve linear-constrained optimization
problems. PDASGD could be applied to solve the discrete optimal transport (OT)
problem and enjoys the best-known computational complexity --
$\widetilde{\mathcal{O}}(n^2/\epsilon)$, where $n$ is the number of atoms, and
$\epsilon>0$ is the accuracy. In the literature, some primal-dual accelerated
first-order algorithms, e.g., APDAGD, have been proposed and have the order of
$\widetilde{\mathcal{O}}(n^{2.5}/\epsilon)$ for solving the OT problem. To
understand why our proposed algorithm could improve the rate by a factor of
$\widetilde{\mathcal{O}}(\sqrt{n})$, the conditions under which our stochastic
algorithm has a lower order of computational complexity for solving
linear-constrained optimization problems are discussed. It is demonstrated that
the OT problem could satisfy the aforementioned conditions. Numerical
experiments demonstrate superior practical performances of the proposed PDASGD
algorithm for solving the OT problem.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Improved Rate of First Order Algorithms for Entropic Optimal Transport [2.1485350418225244]
This paper improves the state-of-the-art rate of a first-order algorithm for solving entropy regularized optimal transport.
We propose an accelerated primal-dual mirror descent algorithm with variance reduction.
Our algorithm may inspire more research to develop accelerated primal-dual algorithms that have rate $widetildeO(n2/epsilon)$ for solving OT.
arXiv Detail & Related papers (2023-01-23T19:13:25Z) - A stochastic linearized proximal method of multipliers for convex
stochastic optimization with expectation constraints [8.133190610747974]
We present a computable approximation type algorithm, namely the linearized proximal convex method of multipliers.
Some preliminary numerical results demonstrate the performance of the proposed algorithm.
arXiv Detail & Related papers (2021-06-22T07:24:17Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
We propose a new algorithm -- the Momentum- Single-timescale Approximation (MSTSA) -- for tackling problems.
MSTSA allows us to control the error in iterations due to inaccurate solution to the lower level subproblem.
arXiv Detail & Related papers (2021-02-15T07:10:33Z) - Distributed Stochastic Consensus Optimization with Momentum for
Nonconvex Nonsmooth Problems [45.88640334610308]
This paper presents a new distributed optimization algorithm for non-smooth problems.
We show that the proposed algorithm can achieve an overcal communication.
Experiments are presented to illustrate the effectiveness of the proposed algorithms.
arXiv Detail & Related papers (2020-11-10T13:12:21Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z) - Second-order Conditional Gradient Sliding [79.66739383117232]
We present the emphSecond-Order Conditional Gradient Sliding (SOCGS) algorithm.
The SOCGS algorithm converges quadratically in primal gap after a finite number of linearly convergent iterations.
It is useful when the feasible region can only be accessed efficiently through a linear optimization oracle.
arXiv Detail & Related papers (2020-02-20T17:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.