A stochastic linearized proximal method of multipliers for convex
stochastic optimization with expectation constraints
- URL: http://arxiv.org/abs/2106.11577v1
- Date: Tue, 22 Jun 2021 07:24:17 GMT
- Title: A stochastic linearized proximal method of multipliers for convex
stochastic optimization with expectation constraints
- Authors: Liwei Zhang and Yule Zhang and Jia Wu and Xiantao Xiao
- Abstract summary: We present a computable approximation type algorithm, namely the linearized proximal convex method of multipliers.
Some preliminary numerical results demonstrate the performance of the proposed algorithm.
- Score: 8.133190610747974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers the problem of minimizing a convex expectation function
with a set of inequality convex expectation constraints. We present a
computable stochastic approximation type algorithm, namely the stochastic
linearized proximal method of multipliers, to solve this convex stochastic
optimization problem. This algorithm can be roughly viewed as a hybrid of
stochastic approximation and the traditional proximal method of multipliers.
Under mild conditions, we show that this algorithm exhibits $O(K^{-1/2})$
expected convergence rates for both objective reduction and constraint
violation if parameters in the algorithm are properly chosen, where $K$ denotes
the number of iterations. Moreover, we show that, with high probability, the
algorithm has $O(\log(K)K^{-1/2})$ constraint violation bound and
$O(\log^{3/2}(K)K^{-1/2})$ objective bound. Some preliminary numerical results
demonstrate the performance of the proposed algorithm.
Related papers
- Fast Minimization of Expected Logarithmic Loss via Stochastic Dual
Averaging [8.990961435218544]
We propose a first-order algorithm named $B$-sample dual averaging with the logarithmic barrier.
For the Poisson inverse problem, our algorithm attains an $varepsilon$ solution in $smashtildeO(d3/varepsilon2)$ time.
When computing the maximum-likelihood estimate for quantum state tomography, our algorithm yields an $varepsilon$-optimal solution in $smashtildeO(d3/varepsilon2)$ time.
arXiv Detail & Related papers (2023-11-05T03:33:44Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - A Projection-free Algorithm for Constrained Stochastic Multi-level
Composition Optimization [12.096252285460814]
We propose a projection-free conditional gradient-type algorithm for composition optimization.
We show that the number of oracles and the linear-minimization oracle required by the proposed algorithm, are of order $mathcalO_T(epsilon-2)$ and $mathcalO_T(epsilon-3)$ respectively.
arXiv Detail & Related papers (2022-02-09T06:05:38Z) - Nearly Optimal Linear Convergence of Stochastic Primal-Dual Methods for
Linear Programming [5.126924253766052]
We show that the proposed method exhibits a linear convergence rate for solving sharp instances with a high probability.
We also propose an efficient coordinate-based oracle for unconstrained bilinear problems.
arXiv Detail & Related papers (2021-11-10T04:56:38Z) - Conservative Stochastic Optimization with Expectation Constraints [11.393603788068777]
This paper considers convex optimization problems where the objective and constraint functions involve expectations with respect to the data indices or environmental variables.
Online and efficient approaches for solving such problems have not been widely studied.
We propose a novel conservative optimization algorithm (CSOA) that achieves zero constraint violation and $Oleft(T-frac12right)$ optimality gap.
arXiv Detail & Related papers (2020-08-13T08:56:24Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z) - Efficient algorithms for multivariate shape-constrained convex
regression problems [9.281671380673306]
We prove that the least squares estimator is computable via solving a constrained convex programming (QP) problem with $(n+1)d$ variables and at least $n(n-1)$ linear inequality constraints.
For solving the generally very large-scale convex QP, we design two efficient algorithms, one is the symmetric Gauss-Seidel based alternating direction method of multipliers (tt sGS-ADMM), and the other is the proximal augmented Lagrangian method (tt pALM) with the subproblems solved by the semismooth Newton method (t
arXiv Detail & Related papers (2020-02-26T11:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.