Improving Point Cloud Based Place Recognition with Ranking-based Loss
and Large Batch Training
- URL: http://arxiv.org/abs/2203.00972v1
- Date: Wed, 2 Mar 2022 09:29:28 GMT
- Title: Improving Point Cloud Based Place Recognition with Ranking-based Loss
and Large Batch Training
- Authors: Jacek Komorowski
- Abstract summary: The paper presents a simple and effective learning-based method for computing a discriminative 3D point cloud descriptor.
We employ recent advances in image retrieval and propose a modified version of a loss function based on a differentiable average precision approximation.
- Score: 1.116812194101501
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper presents a simple and effective learning-based method for computing
a discriminative 3D point cloud descriptor for place recognition purposes.
Recent state-of-the-art methods have relatively complex architectures such as
multi-scale oyramid of point Transformers combined with a pyramid of feature
aggregation modules. Our method uses a simple and efficient 3D convolutional
feature extraction, based on a sparse voxelized representation, enhanced with
channel attention blocks. We employ recent advances in image retrieval and
propose a modified version of a loss function based on a differentiable average
precision approximation. Such loss function requires training with very large
batches for the best results. This is enabled by using multistaged
backpropagation. Experimental evaluation on the popular benchmarks proves the
effectiveness of our approach, with a consistent improvement over the state of
the art
Related papers
- FaVoR: Features via Voxel Rendering for Camera Relocalization [23.7893950095252]
Camera relocalization methods range from dense image alignment to direct camera pose regression from a query image.
We propose a novel approach that leverages a globally sparse yet locally dense 3D representation of 2D features.
By tracking and triangulating landmarks over a sequence of frames, we construct a sparse voxel map optimized to render image patch descriptors observed during tracking.
arXiv Detail & Related papers (2024-09-11T18:58:16Z) - MinkUNeXt: Point Cloud-based Large-scale Place Recognition using 3D
Sparse Convolutions [1.124958340749622]
MinkUNeXt is an effective and efficient architecture for place-recognition from point clouds entirely based on the new 3D MinkNeXt Block.
A thorough assessment of the proposal has been carried out using the Oxford RobotCar and the In-house datasets.
arXiv Detail & Related papers (2024-03-12T12:25:54Z) - Sample Less, Learn More: Efficient Action Recognition via Frame Feature
Restoration [59.6021678234829]
We propose a novel method to restore the intermediate features for two sparsely sampled and adjacent video frames.
With the integration of our method, the efficiency of three commonly used baselines has been improved by over 50%, with a mere 0.5% reduction in recognition accuracy.
arXiv Detail & Related papers (2023-07-27T13:52:42Z) - UHRNet: A Deep Learning-Based Method for Accurate 3D Reconstruction from
a Single Fringe-Pattern [3.5401671460123576]
We propose using a U shaped High resolution Network (UHRNet) to improve method's accuracy.
The network uses UNet encoding and decoding structure as backbone, with Multi-Level convolution Block and High resolution Fusion Block applied.
Our experimental results show that our proposed method can increase the accuracy of 3D reconstruction from a single fringe pattern.
arXiv Detail & Related papers (2023-04-23T08:39:05Z) - Improving Transformer-based Image Matching by Cascaded Capturing
Spatially Informative Keypoints [44.90917854990362]
We propose a transformer-based cascade matching model -- Cascade feature Matching TRansformer (CasMTR)
We use a simple yet effective Non-Maximum Suppression (NMS) post-process to filter keypoints through the confidence map.
CasMTR achieves state-of-the-art performance in indoor and outdoor pose estimation as well as visual localization.
arXiv Detail & Related papers (2023-03-06T04:32:34Z) - Large-scale Point Cloud Registration Based on Graph Matching
Optimization [30.92028761652611]
We propose a underlineGraph underlineMatching underlineOptimization based underlineNetwork.
The proposed method has been evaluated on the 3DMatch/3DLoMatch benchmarks and the KITTI benchmark.
arXiv Detail & Related papers (2023-02-12T03:29:35Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
Mesh and Point Cloud simplification methods aim to reduce the complexity of 3D models while retaining visual quality and relevant salient features.
We propose a fast point cloud simplification method by learning to sample salient points.
The proposed method relies on a graph neural network architecture trained to select an arbitrary, user-defined, number of points from the input space and to re-arrange their positions so as to minimize the visual perception error.
arXiv Detail & Related papers (2021-09-30T10:23:55Z) - Learning Condition Invariant Features for Retrieval-Based Localization
from 1M Images [85.81073893916414]
We develop a novel method for learning more accurate and better generalizing localization features.
On the challenging Oxford RobotCar night condition, our method outperforms the well-known triplet loss by 24.4% in localization accuracy within 5m.
arXiv Detail & Related papers (2020-08-27T14:46:22Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
We introduce a comprehensive benchmark for local features and robust estimation algorithms.
Our pipeline's modular structure allows easy integration, configuration, and combination of different methods.
We show that with proper settings, classical solutions may still outperform the perceived state of the art.
arXiv Detail & Related papers (2020-03-03T15:20:57Z) - PointHop++: A Lightweight Learning Model on Point Sets for 3D
Classification [55.887502438160304]
The PointHop method was recently proposed by Zhang et al. for 3D point cloud classification with unsupervised feature extraction.
We improve the PointHop method furthermore in two aspects: 1) reducing its model complexity in terms of the model parameter number and 2) ordering discriminant features automatically based on the cross-entropy criterion.
With experiments conducted on the ModelNet40 benchmark dataset, we show that the PointHop++ method performs on par with deep neural network (DNN) solutions and surpasses other unsupervised feature extraction methods.
arXiv Detail & Related papers (2020-02-09T04:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.