Large-scale Point Cloud Registration Based on Graph Matching
Optimization
- URL: http://arxiv.org/abs/2302.05844v2
- Date: Thu, 16 Feb 2023 02:59:22 GMT
- Title: Large-scale Point Cloud Registration Based on Graph Matching
Optimization
- Authors: Qianliang Wu, Yaqi Shen, Guofeng Mei, Yaqing Ding, Lei Luo, Jin Xie,
Jian Yang
- Abstract summary: We propose a underlineGraph underlineMatching underlineOptimization based underlineNetwork.
The proposed method has been evaluated on the 3DMatch/3DLoMatch benchmarks and the KITTI benchmark.
- Score: 30.92028761652611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point Clouds Registration is a fundamental and challenging problem in 3D
computer vision. It has been shown that the isometric transformation is an
essential property in rigid point cloud registration, but the existing methods
only utilize it in the outlier rejection stage. In this paper, we emphasize
that the isometric transformation is also important in the feature learning
stage for improving registration quality. We propose a \underline{G}raph
\underline{M}atching \underline{O}ptimization based \underline{Net}work
(denoted as GMONet for short), which utilizes the graph matching method to
explicitly exert the isometry preserving constraints in the point feature
learning stage to improve %refine the point representation. Specifically, we
%use exploit the partial graph matching constraint to enhance the overlap
region detection abilities of super points ($i.e.,$ down-sampled key points)
and full graph matching to refine the registration accuracy at the fine-level
overlap region. Meanwhile, we leverage the mini-batch sampling to improve the
efficiency of the full graph matching optimization. Given high discriminative
point features in the evaluation stage, we utilize the RANSAC approach to
estimate the transformation between the scanned pairs. The proposed method has
been evaluated on the 3DMatch/3DLoMatch benchmarks and the KITTI benchmark. The
experimental results show that our method achieves competitive performance
compared with the existing state-of-the-art baselines.
Related papers
- L-PR: Exploiting LiDAR Fiducial Marker for Unordered Low Overlap Multiview Point Cloud Registration [5.2357168261831335]
This paper introduces a novel framework dubbed L-PR, designed to register unordered low overlap point clouds.
We refer to them as LiDAR fiducial markers, but they are the same as the popular AprilTag and ArUco markers.
We conduct both qualitative and quantitative experiments to demonstrate that the proposed method surpasses previous state-of-the-art methods.
arXiv Detail & Related papers (2024-06-05T14:08:13Z) - SG-PGM: Partial Graph Matching Network with Semantic Geometric Fusion for 3D Scene Graph Alignment and Its Downstream Tasks [14.548198408544032]
We treat 3D scene graph alignment as a partial graph-matching problem and propose to solve it with a graph neural network.
We reuse the geometric features learned by a point cloud registration method and associate the clustered point-level geometric features with the node-level semantic feature.
We propose a point-matching rescoring method, that uses the node-wise alignment of the 3D scene graph to reweight the matching candidates from a pre-trained point cloud registration method.
arXiv Detail & Related papers (2024-03-28T15:01:58Z) - Q-REG: End-to-End Trainable Point Cloud Registration with Surface
Curvature [81.25511385257344]
We present a novel solution, Q-REG, which utilizes rich geometric information to estimate the rigid pose from a single correspondence.
Q-REG allows to formalize the robust estimation as an exhaustive search, hence enabling end-to-end training.
We demonstrate in the experiments that Q-REG is agnostic to the correspondence matching method and provides consistent improvement both when used only in inference and in end-to-end training.
arXiv Detail & Related papers (2023-09-27T20:58:53Z) - Robust Point Cloud Registration Framework Based on Deep Graph
Matching(TPAMI Version) [13.286247750893681]
3D point cloud registration is a fundamental problem in computer vision and robotics.
We propose a novel deep graph matching-based framework for point cloud registration.
arXiv Detail & Related papers (2022-11-09T06:05:25Z) - Dual Adaptive Transformations for Weakly Supervised Point Cloud
Segmentation [78.6612285236938]
We propose a novel DAT (textbfDual textbfAdaptive textbfTransformations) model for weakly supervised point cloud segmentation.
We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets.
arXiv Detail & Related papers (2022-07-19T05:43:14Z) - Learning to Register Unbalanced Point Pairs [10.369750912567714]
Recent 3D registration methods can effectively handle large-scale or partially overlapping point pairs.
We present a novel 3D registration method, called UPPNet, for the unbalanced point pairs.
arXiv Detail & Related papers (2022-07-09T08:03:59Z) - REGTR: End-to-end Point Cloud Correspondences with Transformers [79.52112840465558]
We conjecture that attention mechanisms can replace the role of explicit feature matching and RANSAC.
We propose an end-to-end framework to directly predict the final set of correspondences.
Our approach achieves state-of-the-art performance on 3DMatch and ModelNet benchmarks.
arXiv Detail & Related papers (2022-03-28T06:01:00Z) - Deep Hough Voting for Robust Global Registration [52.40611370293272]
We present an efficient framework for pairwise registration of real-world 3D scans, leveraging Hough voting in the 6D transformation parameter space.
Our method outperforms state-of-the-art methods on 3DMatch and 3DLoMatch benchmarks while achieving comparable performance on KITTI odometry dataset.
arXiv Detail & Related papers (2021-09-09T14:38:06Z) - UPDesc: Unsupervised Point Descriptor Learning for Robust Registration [54.95201961399334]
UPDesc is an unsupervised method to learn point descriptors for robust point cloud registration.
We show that our learned descriptors yield superior performance over existing unsupervised methods.
arXiv Detail & Related papers (2021-08-05T17:11:08Z) - Deep-3DAligner: Unsupervised 3D Point Set Registration Network With
Optimizable Latent Vector [15.900382629390297]
We propose to develop a novel model that integrates the optimization to learning, aiming to address the technical challenges in 3D registration.
In addition to the deep transformation decoding network, our framework introduce an optimizable deep underlineSpatial underlineCorrelation underlineRepresentation.
arXiv Detail & Related papers (2020-09-29T22:44:38Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.