UAV-Aided Decentralized Learning over Mesh Networks
- URL: http://arxiv.org/abs/2203.01008v1
- Date: Wed, 2 Mar 2022 10:39:40 GMT
- Title: UAV-Aided Decentralized Learning over Mesh Networks
- Authors: Matteo Zecchin, David Gesbert, Marios Kountouris
- Abstract summary: Decentralized learning empowers wireless network devices to collaboratively train a machine learning (ML) model relying solely on device-to-device (D2D) communication.
Local connectivity of real world mesh networks, due to the limited communication range of its wireless nodes, undermines the efficiency of decentralized learning protocols.
We propose an optimized UAV trajectory, that is defined as a sequence of waypoints that the UAV visits sequentially in order to transfer intelligence across sparsely connected group of users.
- Score: 23.612400109629544
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Decentralized learning empowers wireless network devices to collaboratively
train a machine learning (ML) model relying solely on device-to-device (D2D)
communication. It is known that the convergence speed of decentralized
optimization algorithms severely depends on the degree of the network
connectivity, with denser network topologies leading to shorter convergence
time. Consequently, local connectivity of real world mesh networks, due to the
limited communication range of its wireless nodes, undermines the efficiency of
decentralized learning protocols, rendering them potentially impracticable. In
this work we investigate the role of an unmanned aerial vehicle (UAV), used as
flying relay, in facilitating decentralized learning procedures in such
challenging conditions. We propose an optimized UAV trajectory, that is defined
as a sequence of waypoints that the UAV visits sequentially in order to
transfer intelligence across sparsely connected group of users. We then provide
a series of experiments highlighting the essential role of UAVs in the context
of decentralized learning over mesh networks.
Related papers
- Decentralized Learning over Wireless Networks: The Effect of Broadcast
with Random Access [56.91063444859008]
We investigate the impact of broadcast transmission and probabilistic random access policy on the convergence performance of D-SGD.
Our results demonstrate that optimizing the access probability to maximize the expected number of successful links is a highly effective strategy for accelerating the system convergence.
arXiv Detail & Related papers (2023-05-12T10:32:26Z) - Decentralized federated learning methods for reducing communication cost
and energy consumption in UAV networks [8.21384946488751]
Unmanned aerial vehicles (UAV) play many roles in a modern smart city such as the delivery of goods, mapping real-time road traffic and monitoring pollution.
Traditional machine learning models for drones encounter data privacy problems, communication costs and energy limitations.
We propose two aggregation methods: Commutative FL and Alternate FL, based on the existing architecture of decentralised Federated Learning for UAV Networks (DFL-UN)
arXiv Detail & Related papers (2023-04-13T14:00:34Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Asynchronous Decentralized Learning over Unreliable Wireless Networks [4.630093015127539]
Decentralized learning enables edge users to collaboratively train models by exchanging information via device-to-device communication.
We propose an asynchronous decentralized gradient descent (DSGD) algorithm, which is robust to the inherent and communication failures occurring at the wireless network edge.
Experimental results corroborate our analysis, demonstrating the benefits of asynchronicity and outdated gradient information reuse in decentralized learning over unreliable wireless networks.
arXiv Detail & Related papers (2022-02-02T11:00:49Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - UAV-assisted Online Machine Learning over Multi-Tiered Networks: A
Hierarchical Nested Personalized Federated Learning Approach [25.936914508952086]
We consider distributed machine learning (ML) through unmanned aerial vehicles (UAVs) for geo-distributed device clusters.
We propose five new technologies/techniques: (i) stratified UAV swarms with leader, worker, and coordinator UAVs, (ii) hierarchical nested personalized federated learning (HN-PFL), and (iii) cooperative UAV resource pooling for distributed ML using the UAVs' local computational capabilities.
arXiv Detail & Related papers (2021-06-29T21:40:28Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Privacy-Preserving Federated Learning for UAV-Enabled Networks:
Learning-Based Joint Scheduling and Resource Management [45.15174235000158]
Unmanned aerial vehicles (UAVs) are capable of serving as flying base stations (BSs) for supporting data collection, artificial intelligence (AI) model training, and wireless communications.
It is impractical to send raw data of devices to UAV servers for model training.
In this paper, we develop an asynchronous federated learning framework for multi-UAV-enabled networks.
arXiv Detail & Related papers (2020-11-28T18:58:34Z) - UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach [18.266087952180733]
We propose a new end-to-end reinforcement learning approach to UAV-enabled data collection from Internet of Things (IoT) devices.
An autonomous drone is tasked with gathering data from distributed sensor nodes subject to limited flying time and obstacle avoidance.
We show that our proposed network architecture enables the agent to make movement decisions for a variety of scenario parameters.
arXiv Detail & Related papers (2020-07-01T15:14:16Z) - From Federated to Fog Learning: Distributed Machine Learning over
Heterogeneous Wireless Networks [71.23327876898816]
Federated learning has emerged as a technique for training ML models at the network edge by leveraging processing capabilities across the nodes that collect the data.
We advocate a new learning paradigm called fog learning which will intelligently distribute ML model training across the continuum of nodes from edge devices to cloud servers.
arXiv Detail & Related papers (2020-06-07T05:11:18Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.