Decentralized federated learning methods for reducing communication cost
and energy consumption in UAV networks
- URL: http://arxiv.org/abs/2304.06551v1
- Date: Thu, 13 Apr 2023 14:00:34 GMT
- Title: Decentralized federated learning methods for reducing communication cost
and energy consumption in UAV networks
- Authors: Deng Pan, Mohammad Ali Khoshkholghi, Toktam Mahmoodi
- Abstract summary: Unmanned aerial vehicles (UAV) play many roles in a modern smart city such as the delivery of goods, mapping real-time road traffic and monitoring pollution.
Traditional machine learning models for drones encounter data privacy problems, communication costs and energy limitations.
We propose two aggregation methods: Commutative FL and Alternate FL, based on the existing architecture of decentralised Federated Learning for UAV Networks (DFL-UN)
- Score: 8.21384946488751
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unmanned aerial vehicles (UAV) or drones play many roles in a modern smart
city such as the delivery of goods, mapping real-time road traffic and
monitoring pollution. The ability of drones to perform these functions often
requires the support of machine learning technology. However, traditional
machine learning models for drones encounter data privacy problems,
communication costs and energy limitations. Federated Learning, an emerging
distributed machine learning approach, is an excellent solution to address
these issues. Federated learning (FL) allows drones to train local models
without transmitting raw data. However, existing FL requires a central server
to aggregate the trained model parameters of the UAV. A failure of the central
server can significantly impact the overall training. In this paper, we propose
two aggregation methods: Commutative FL and Alternate FL, based on the existing
architecture of decentralised Federated Learning for UAV Networks (DFL-UN) by
adding a unique aggregation method of decentralised FL. Those two methods can
effectively control energy consumption and communication cost by controlling
the number of local training epochs, local communication, and global
communication. The simulation results of the proposed training methods are also
presented to verify the feasibility and efficiency of the architecture compared
with two benchmark methods (e.g. standard machine learning training and
standard single aggregation server training). The simulation results show that
the proposed methods outperform the benchmark methods in terms of operational
stability, energy consumption and communication cost.
Related papers
- Exploring the Practicality of Federated Learning: A Survey Towards the Communication Perspective [1.088537320059347]
Federated Learning (FL) is a promising paradigm that offers significant advancements in privacy-preserving, decentralized machine learning.
However, the practical deployment of FL systems faces a significant bottleneck: the communication overhead.
This survey investigates various strategies and advancements made in communication-efficient FL.
arXiv Detail & Related papers (2024-05-30T19:21:33Z) - Event-Triggered Decentralized Federated Learning over
Resource-Constrained Edge Devices [12.513477328344255]
Federated learning (FL) is a technique for distributed machine learning (ML)
In traditional FL algorithms, trained models at the edge are periodically sent to a central server for aggregation.
We develop a novel methodology for fully decentralized FL, where devices conduct model aggregation via cooperative consensus formation.
arXiv Detail & Related papers (2022-11-23T00:04:05Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - UAV-Aided Decentralized Learning over Mesh Networks [23.612400109629544]
Decentralized learning empowers wireless network devices to collaboratively train a machine learning (ML) model relying solely on device-to-device (D2D) communication.
Local connectivity of real world mesh networks, due to the limited communication range of its wireless nodes, undermines the efficiency of decentralized learning protocols.
We propose an optimized UAV trajectory, that is defined as a sequence of waypoints that the UAV visits sequentially in order to transfer intelligence across sparsely connected group of users.
arXiv Detail & Related papers (2022-03-02T10:39:40Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - FedHe: Heterogeneous Models and Communication-Efficient Federated
Learning [0.0]
Federated learning (FL) is able to manage edge devices to cooperatively train a model while maintaining the training data local and private.
We propose a novel FL method, called FedHe, inspired by knowledge distillation, which can train heterogeneous models and support asynchronous training processes.
arXiv Detail & Related papers (2021-10-19T12:18:37Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
This article breaks down and analyzes the main factors that influence the environmental footprint of distributed learning policies.
It models both vanilla and decentralized FL policies driven by consensus.
Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency.
arXiv Detail & Related papers (2021-03-18T16:04:42Z) - Privacy-Preserving Federated Learning for UAV-Enabled Networks:
Learning-Based Joint Scheduling and Resource Management [45.15174235000158]
Unmanned aerial vehicles (UAVs) are capable of serving as flying base stations (BSs) for supporting data collection, artificial intelligence (AI) model training, and wireless communications.
It is impractical to send raw data of devices to UAV servers for model training.
In this paper, we develop an asynchronous federated learning framework for multi-UAV-enabled networks.
arXiv Detail & Related papers (2020-11-28T18:58:34Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z) - Communication Efficient Federated Learning with Energy Awareness over
Wireless Networks [51.645564534597625]
In federated learning (FL), the parameter server and the mobile devices share the training parameters over wireless links.
We adopt the idea of SignSGD in which only the signs of the gradients are exchanged.
Two optimization problems are formulated and solved, which optimize the learning performance.
Considering that the data may be distributed across the mobile devices in a highly uneven fashion in FL, a sign-based algorithm is proposed.
arXiv Detail & Related papers (2020-04-15T21:25:13Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.