論文の概要: On the Configuration of More and Less Expressive Logic Programs
- arxiv url: http://arxiv.org/abs/2203.01024v1
- Date: Wed, 2 Mar 2022 10:55:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-03 14:48:23.960311
- Title: On the Configuration of More and Less Expressive Logic Programs
- Title(参考訳): より表現力の低い論理プログラムの構成について
- Authors: Carmine Dodaro, Marco Maratea, Mauro Vallati
- Abstract要約: SATとASPの2つのよく知られたモデルベースAI手法は、入力を特徴付けるかもしれない多くの構文的特徴を定義する。
各競合から抽出したSATドメインとASPドメインに関する広範な実験的分析の結果は、入力の再構成と構成を用いて得られる様々な利点を示している。
- 参考スコア(独自算出の注目度): 11.331373810571993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The decoupling between the representation of a certain problem, i.e., its
knowledge model, and the reasoning side is one of main strong points of
model-based Artificial Intelligence (AI). This allows, e.g. to focus on
improving the reasoning side by having advantages on the whole solving process.
Further, it is also well-known that many solvers are very sensitive to even
syntactic changes in the input. In this paper, we focus on improving the
reasoning side by taking advantages of such sensitivity. We consider two
well-known model-based AI methodologies, SAT and ASP, define a number of
syntactic features that may characterise their inputs, and use automated
configuration tools to reformulate the input formula or program. Results of a
wide experimental analysis involving SAT and ASP domains, taken from respective
competitions, show the different advantages that can be obtained by using input
reformulation and configuration. Under consideration in Theory and Practice of
Logic Programming (TPLP).
- Abstract(参考訳): ある問題の表現、すなわちその知識モデルと推論側との疎結合は、モデルベース人工知能(AI)の主要な強みの1つである。
これにより、例えば、問題解決プロセス全体に利点を与えることで、推論側の改善に集中することができる。
さらに、多くの解法が入力の構文変化にも非常に敏感であることも知られている。
本稿では,このような感度の利点を生かして推論面の改善に着目する。
SATとASPの2つのよく知られたモデルベースAI手法について検討し、入力を特徴付けるいくつかの構文的特徴を定義し、自動設定ツールを使用して入力式やプログラムを再構成する。
各競合から抽出したSATドメインとASPドメインに関する広範な実験的分析の結果は、入力の再構成と構成を用いて得られる様々な利点を示している。
論理プログラミングの理論と実践(tplp)における考察。
関連論文リスト
- Language Models can be Logical Solvers [99.40649402395725]
論理解法の推論過程を直接エミュレートする新しい言語モデルであるLoGiPTを導入する。
LoGiPTは、導出的ソルバの見えない推論過程を明らかにして精錬することから導かれる、新しく構築された命令チューニングデータセットに基づいて微調整される。
論文 参考訳(メタデータ) (2023-11-10T16:23:50Z) - AISYN: AI-driven Reinforcement Learning-Based Logic Synthesis Framework [0.8356765961526955]
我々は人工知能(AI)と強化学習(RL)アルゴリズムがこの問題の解決に役立つと考えている。
オープンソースのベンチマーク回路と産業用ベンチマーク回路を併用した実験により,論理合成最適化関数をAI駆動にすることで,面積,遅延,電力といった重要な指標を大幅に改善できることが判明した。
論文 参考訳(メタデータ) (2023-02-08T00:55:24Z) - Chaining Simultaneous Thoughts for Numerical Reasoning [92.2007997126144]
テキストによる数値推論は、AIシステムにとって不可欠なスキルであるべきです。
これまでの研究は方程式の構造をモデル化することに集中し、様々な構造化デコーダを提案してきた。
我々は、有向非巡回グラフを用いてステップを推論する数値推論器CANTORを提案する。
論文 参考訳(メタデータ) (2022-11-29T18:52:06Z) - Unifying Framework for Optimizations in non-boolean Formalisms [0.6853165736531939]
多くの一般的な自動推論パラダイムは最適化文をサポートする言語を提供する。
本稿では,パラダイム間の統語的区別を排除する統一フレームワークを提案する。
本稿では,提案方式の形式的特性を,我々の枠組み内で捉えることができるパラダイムの形式的特性に変換するシステムについて検討する。
論文 参考訳(メタデータ) (2022-06-16T00:38:19Z) - An Abstract View on Optimizations in Propositional Frameworks [0.6853165736531939]
本稿では,パラダイム間の統語的区別を排除した,いわゆる重みシステムの統一フレームワークを提案する。
このフレームワークは、自動推論と知識表現における最適化とモジュラリティの研究において、大幅な単純化と説明力を持っている。
論文 参考訳(メタデータ) (2022-06-13T19:44:01Z) - Logically Consistent Adversarial Attacks for Soft Theorem Provers [110.17147570572939]
本稿では,言語モデルの推論能力の探索と改善のための生成的逆説フレームワークを提案する。
我々のフレームワークは、敵の攻撃をうまく発生させ、グローバルな弱点を識別する。
有効探索に加えて, 生成したサンプルのトレーニングにより, 対象モデルの性能が向上することを示す。
論文 参考訳(メタデータ) (2022-04-29T19:10:12Z) - Design of quantum optical experiments with logic artificial intelligence [1.6114012813668934]
本稿では,光学量子実験の設計における論理AIの利用を提案する。
任意の量子状態の実験的な準備をSAT問題にマップする方法を示す。
論理AIの使用により,この問題の解決度が大幅に向上することが判明した。
論文 参考訳(メタデータ) (2021-09-27T18:01:08Z) - Transformer-based Machine Learning for Fast SAT Solvers and Logic
Synthesis [63.53283025435107]
CNFベースのSATとMaxSATは論理合成と検証システムの中心である。
そこで本研究では,Transformerアーキテクチャから派生したワンショットモデルを用いて,MaxSAT問題の解法を提案する。
論文 参考訳(メタデータ) (2021-07-15T04:47:35Z) - Enforcing Consistency in Weakly Supervised Semantic Parsing [68.2211621631765]
本稿では,関連する入力に対する出力プログラム間の整合性を利用して,スプリアスプログラムの影響を低減することを提案する。
より一貫性のあるフォーマリズムは、一貫性に基づくトレーニングを必要とせずに、モデルパフォーマンスを改善することにつながります。
論文 参考訳(メタデータ) (2021-07-13T03:48:04Z) - Online Learning Probabilistic Event Calculus Theories in Answer Set
Programming [70.06301658267125]
イベント認識(CER)システムは、事前に定義されたイベントパターンを使用して、ストリーミングタイムスタンプデータセットで発生を検出する。
本稿では,複雑なイベントパターンによる確率論的推論を,イベント計算で重み付けされたルールの形で行うことができるAnswer Set Programming(ASP)に基づくシステムを提案する。
その結果, 効率と予測の両面で, 新たなアプローチの優位性が示された。
論文 参考訳(メタデータ) (2021-03-31T23:16:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。