DeepClair: Utilizing Market Forecasts for Effective Portfolio Selection
- URL: http://arxiv.org/abs/2407.13427v3
- Date: Fri, 16 Aug 2024 06:54:26 GMT
- Title: DeepClair: Utilizing Market Forecasts for Effective Portfolio Selection
- Authors: Donghee Choi, Jinkyu Kim, Mogan Gim, Jinho Lee, Jaewoo Kang,
- Abstract summary: We introduce DeepClair, a novel framework for portfolio selection.
DeepClair leverages a transformer-based time-series forecasting model to predict market trends.
- Score: 29.43115584494825
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Utilizing market forecasts is pivotal in optimizing portfolio selection strategies. We introduce DeepClair, a novel framework for portfolio selection. DeepClair leverages a transformer-based time-series forecasting model to predict market trends, facilitating more informed and adaptable portfolio decisions. To integrate the forecasting model into a deep reinforcement learning-driven portfolio selection framework, we introduced a two-step strategy: first, pre-training the time-series model on market data, followed by fine-tuning the portfolio selection architecture using this model. Additionally, we investigated the optimization technique, Low-Rank Adaptation (LoRA), to enhance the pre-trained forecasting model for fine-tuning in investment scenarios. This work bridges market forecasting and portfolio selection, facilitating the advancement of investment strategies.
Related papers
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - Conformal Predictive Portfolio Selection [10.470114319701576]
We propose a framework for predictive portfolio selection using conformal inference, called Conformal Predictive Portfolio Selection ( CPPS)
Our approach predicts future portfolio returns, computes corresponding prediction intervals, and selects the desirable portfolio based on these intervals.
We demonstrate the effectiveness of our CPPS framework using an AR model and validate its performance through empirical studies.
arXiv Detail & Related papers (2024-10-19T15:42:49Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
We study the use of deep reinforcement learning for responsible portfolio optimization by incorporating ESG states and objectives.
Our results show that deep reinforcement learning policies can provide competitive performance against mean-variance approaches for responsible portfolio allocation.
arXiv Detail & Related papers (2024-03-25T12:04:03Z) - ChatGPT-based Investment Portfolio Selection [21.24186888129542]
We explore potential uses of generative AI models, such as ChatGPT, for investment portfolio selection.
We use ChatGPT to obtain a universe of stocks from S&P500 market index that are potentially attractive for investing.
Our findings indicate that ChatGPT is effective in stock selection but may not perform as well in assigning optimal weights to stocks within the portfolio.
arXiv Detail & Related papers (2023-08-11T17:48:17Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - E2EAI: End-to-End Deep Learning Framework for Active Investing [123.52358449455231]
We propose an E2E that covers almost the entire process of factor investing through factor selection, factor combination, stock selection, and portfolio construction.
Experiments on real stock market data demonstrate the effectiveness of our end-to-end deep leaning framework in active investing.
arXiv Detail & Related papers (2023-05-25T10:27:07Z) - Optimizing Stock Option Forecasting with the Assembly of Machine
Learning Models and Improved Trading Strategies [9.553857741758742]
This paper introduced key aspects of applying Machine Learning (ML) models, improved trading strategies, and the Quasi-Reversibility Method (QRM) to optimize stock option forecasting and trading results.
arXiv Detail & Related papers (2022-11-29T04:01:16Z) - Fusion of Sentiment and Asset Price Predictions for Portfolio
Optimization [0.0]
This paper uses a Semantic Attention Model to predict sentiment towards an asset.
We select the optimal portfolio through a sentiment-aware Long Short Term Memory.
Strategy does not outperform traditional portfolio allocation strategies from a stability perspective.
arXiv Detail & Related papers (2022-03-10T23:21:12Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - Deep Learning for Portfolio Optimization [5.833272638548154]
Instead of selecting individual assets, we trade Exchange-Traded Funds (ETFs) of market indices to form a portfolio.
We compare our method with a wide range of algorithms with results showing that our model obtains the best performance over the testing period.
arXiv Detail & Related papers (2020-05-27T21:28:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.