LatentFormer: Multi-Agent Transformer-Based Interaction Modeling and
Trajectory Prediction
- URL: http://arxiv.org/abs/2203.01880v1
- Date: Thu, 3 Mar 2022 17:44:58 GMT
- Title: LatentFormer: Multi-Agent Transformer-Based Interaction Modeling and
Trajectory Prediction
- Authors: Elmira Amirloo, Amir Rasouli, Peter Lakner, Mohsen Rohani, Jun Luo
- Abstract summary: We propose LatentFormer, a transformer-based model for predicting future vehicle trajectories.
We evaluate the proposed method on the nuScenes benchmark dataset and show that our approach achieves state-of-the-art performance and improves upon trajectory metrics by up to 40%.
- Score: 12.84508682310717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent trajectory prediction is a fundamental problem in autonomous
driving. The key challenges in prediction are accurately anticipating the
behavior of surrounding agents and understanding the scene context. To address
these problems, we propose LatentFormer, a transformer-based model for
predicting future vehicle trajectories. The proposed method leverages a novel
technique for modeling interactions among dynamic objects in the scene.
Contrary to many existing approaches which model cross-agent interactions
during the observation time, our method additionally exploits the future states
of the agents. This is accomplished using a hierarchical attention mechanism
where the evolving states of the agents autoregressively control the
contributions of past trajectories and scene encodings in the final prediction.
Furthermore, we propose a multi-resolution map encoding scheme that relies on a
vision transformer module to effectively capture both local and global scene
context to guide the generation of more admissible future trajectories. We
evaluate the proposed method on the nuScenes benchmark dataset and show that
our approach achieves state-of-the-art performance and improves upon trajectory
metrics by up to 40%. We further investigate the contributions of various
components of the proposed technique via extensive ablation studies.
Related papers
- Enhanced Prediction of Multi-Agent Trajectories via Control Inference and State-Space Dynamics [14.694200929205975]
This paper introduces a novel methodology for trajectory forecasting based on state-space dynamic system modeling.
To enhance the precision of state estimations within the dynamic system, the paper also presents a novel modeling technique for control variables.
The proposed approach ingeniously integrates graph neural networks with state-space models, effectively capturing the complexities of multi-agent interactions.
arXiv Detail & Related papers (2024-08-08T08:33:02Z) - Vectorized Representation Dreamer (VRD): Dreaming-Assisted Multi-Agent Motion-Forecasting [2.2020053359163305]
We introduce VRD, a vectorized world model-inspired approach to the multi-agent motion forecasting problem.
Our method combines a traditional open-loop training regime with a novel dreamed closed-loop training pipeline.
Our model achieves state-of-the-art performance on the single prediction miss rate metric.
arXiv Detail & Related papers (2024-06-20T15:34:17Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Diffusion-Based Environment-Aware Trajectory Prediction [3.1406146587437904]
The ability to predict the future trajectories of traffic participants is crucial for the safe and efficient operation of autonomous vehicles.
In this paper, a diffusion-based generative model for multi-agent trajectory prediction is proposed.
The model is capable of capturing the complex interactions between traffic participants and the environment, accurately learning the multimodal nature of the data.
arXiv Detail & Related papers (2024-03-18T10:35:15Z) - MTR++: Multi-Agent Motion Prediction with Symmetric Scene Modeling and
Guided Intention Querying [110.83590008788745]
Motion prediction is crucial for autonomous driving systems to understand complex driving scenarios and make informed decisions.
In this paper, we propose Motion TRansformer (MTR) frameworks to address these challenges.
The initial MTR framework utilizes a transformer encoder-decoder structure with learnable intention queries.
We introduce an advanced MTR++ framework, extending the capability of MTR to simultaneously predict multimodal motion for multiple agents.
arXiv Detail & Related papers (2023-06-30T16:23:04Z) - A Hierarchical Hybrid Learning Framework for Multi-agent Trajectory
Prediction [4.181632607997678]
We propose a hierarchical hybrid framework of deep learning (DL) and reinforcement learning (RL) for multi-agent trajectory prediction.
In the DL stage, the traffic scene is divided into multiple intermediate-scale heterogenous graphs based on which Transformer-style GNNs are adopted to encode heterogenous interactions.
In the RL stage, we divide the traffic scene into local sub-scenes utilizing the key future points predicted in the DL stage.
arXiv Detail & Related papers (2023-03-22T02:47:42Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures.
We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view.
We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level.
arXiv Detail & Related papers (2021-01-14T22:21:25Z) - What-If Motion Prediction for Autonomous Driving [58.338520347197765]
Viable solutions must account for both the static geometric context, such as road lanes, and dynamic social interactions arising from multiple actors.
We propose a recurrent graph-based attentional approach with interpretable geometric (actor-lane) and social (actor-actor) relationships.
Our model can produce diverse predictions conditioned on hypothetical or "what-if" road lanes and multi-actor interactions.
arXiv Detail & Related papers (2020-08-24T17:49:30Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Robust Trajectory Forecasting for Multiple Intelligent Agents in Dynamic
Scene [11.91073327154494]
We present a novel method for robust trajectory forecasting of multiple agents in dynamic scenes.
The proposed method outperforms the state-of-the-art prediction methods in terms of prediction accuracy.
arXiv Detail & Related papers (2020-05-27T02:32:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.