Enhanced Prediction of Multi-Agent Trajectories via Control Inference and State-Space Dynamics
- URL: http://arxiv.org/abs/2408.12609v1
- Date: Thu, 8 Aug 2024 08:33:02 GMT
- Title: Enhanced Prediction of Multi-Agent Trajectories via Control Inference and State-Space Dynamics
- Authors: Yu Zhang, Yongxiang Zou, Haoyu Zhang, Zeyu Liu, Houcheng Li, Long Cheng,
- Abstract summary: This paper introduces a novel methodology for trajectory forecasting based on state-space dynamic system modeling.
To enhance the precision of state estimations within the dynamic system, the paper also presents a novel modeling technique for control variables.
The proposed approach ingeniously integrates graph neural networks with state-space models, effectively capturing the complexities of multi-agent interactions.
- Score: 14.694200929205975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of autonomous systems, accurately predicting the trajectories of nearby vehicles and pedestrians is crucial for ensuring both safety and operational efficiency. This paper introduces a novel methodology for trajectory forecasting based on state-space dynamic system modeling, which endows agents with models that have tangible physical implications. To enhance the precision of state estimations within the dynamic system, the paper also presents a novel modeling technique for control variables. This technique utilizes a newly introduced model, termed "Mixed Mamba," to derive initial control states, thereby improving the predictive accuracy of these variables. Moverover, the proposed approach ingeniously integrates graph neural networks with state-space models, effectively capturing the complexities of multi-agent interactions. This combination provides a robust and scalable framework for forecasting multi-agent trajectories across a range of scenarios. Comprehensive evaluations demonstrate that this model outperforms several established benchmarks across various metrics and datasets, highlighting its significant potential to advance trajectory forecasting in autonomous systems.
Related papers
- Characterized Diffusion Networks for Enhanced Autonomous Driving Trajectory Prediction [0.6202955567445396]
We present a novel trajectory prediction model for autonomous driving.
Our model enhances the accuracy and reliability of trajectory predictions by incorporating uncertainty estimation and complex agent interactions.
The proposed model showcases strong potential for application in real-world autonomous driving systems.
arXiv Detail & Related papers (2024-11-25T15:03:44Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Cheap and Deterministic Inference for Deep State-Space Models of
Interacting Dynamical Systems [38.23826389188657]
We present a deep state-space model which employs graph neural networks in order to model the underlying interacting dynamical system.
The predictive distribution is multimodal and has the form of a Gaussian mixture model, where the moments of the Gaussian components can be computed via deterministic moment matching rules.
Our moment matching scheme can be exploited for sample-free inference, leading to more efficient and stable training compared to Monte Carlo alternatives.
arXiv Detail & Related papers (2023-05-02T20:30:23Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - LatentFormer: Multi-Agent Transformer-Based Interaction Modeling and
Trajectory Prediction [12.84508682310717]
We propose LatentFormer, a transformer-based model for predicting future vehicle trajectories.
We evaluate the proposed method on the nuScenes benchmark dataset and show that our approach achieves state-of-the-art performance and improves upon trajectory metrics by up to 40%.
arXiv Detail & Related papers (2022-03-03T17:44:58Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
We show that expressive autoregressive dynamics models generate different dimensions of the next state and reward sequentially conditioned on previous dimensions.
We also show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer.
arXiv Detail & Related papers (2021-04-28T16:48:44Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - Robots State Estimation and Observability Analysis Based on Statistical
Motion Models [10.941793802354953]
This paper presents a generic motion model to capture mobile robots' dynamic behaviors (translation and rotation)
The model is based on statistical models driven by white random processes and is formulated into a full state estimation algorithm based on the error-state extended Kalman filtering framework (ESEKF)
A novel texttextbfitthin set concept is introduced to characterize the unobservable subset of the system states.
arXiv Detail & Related papers (2020-10-12T18:35:33Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.