論文の概要: A multi-stream convolutional neural network for classification of
progressive MCI in Alzheimer's disease using structural MRI images
- arxiv url: http://arxiv.org/abs/2203.01944v1
- Date: Thu, 3 Mar 2022 15:14:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-08 04:53:11.230394
- Title: A multi-stream convolutional neural network for classification of
progressive MCI in Alzheimer's disease using structural MRI images
- Title(参考訳): 構造MRI画像を用いたアルツハイマー病の進行性MCI分類のためのマルチストリーム畳み込みニューラルネットワーク
- Authors: Mona Ashtari-Majlan and Abbas Seifi and Mohammad Mahdi Dehshibi
- Abstract要約: 安定したMCIとプログレッシブMCIを分類するために,パッチベースの画像データを用いたマルチストリーム深層畳み込みニューラルネットワークを提案する。
まず,アルツハイマー病のMRI画像と認知正常な被験者を比較し,解剖学的特徴を識別する。
これらのランドマークは、MRI画像を分類するために提案されたマルチストリーム畳み込みニューラルネットワークに供給されるパッチを抽出するために使用される。
- 参考スコア(独自算出の注目度): 0.23633885460047763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early diagnosis of Alzheimer's disease and its prodromal stage, also known as
mild cognitive impairment (MCI), is critical since some patients with
progressive MCI will develop the disease. We propose a multi-stream deep
convolutional neural network fed with patch-based imaging data to classify
stable MCI and progressive MCI. First, we compare MRI images of Alzheimer's
disease with cognitively normal subjects to identify distinct anatomical
landmarks using a multivariate statistical test. These landmarks are then used
to extract patches that are fed into the proposed multi-stream convolutional
neural network to classify MRI images. Next, we train the architecture in a
separate scenario using samples from Alzheimer's disease images, which are
anatomically similar to the progressive MCI ones and cognitively normal images
to compensate for the lack of progressive MCI training data. Finally, we
transfer the trained model weights to the proposed architecture in order to
fine-tune the model using progressive MCI and stable MCI data. Experimental
results on the ADNI-1 dataset indicate that our method outperforms existing
methods for MCI classification, with an F1-score of 85.96%.
- Abstract(参考訳): 進行性MCI患者の一部が発症するので、早期にアルツハイマー病とその前頭葉ステージ(軽度認知障害(MCI)とも呼ばれる)を診断することが重要である。
安定したMCIとプログレッシブMCIを分類するために,パッチベースの画像データを用いたマルチストリーム深層畳み込みニューラルネットワークを提案する。
まず,アルツハイマー病のMRI画像と認知正常な被験者を比較し,多変量統計検査を用いて解剖学的特徴を識別する。
これらのランドマークは、MRI画像を分類するために提案されたマルチストリーム畳み込みニューラルネットワークに供給されるパッチを抽出するために使用される。
次に、進行性MCI画像と解剖学的に類似しているアルツハイマー病画像と、進行性MCI訓練データの欠如を補うための認知正常画像を用いて、別のシナリオでアーキテクチャを訓練する。
最後に,学習したモデル重みを提案アーキテクチャに転送し,progressive mciとstable mciデータを用いてモデルを微調整する。
ADNI-1データセットによる実験結果から,本手法は既存のMCI分類法よりも85.96%優れていた。
関連論文リスト
- Early diagnosis of Alzheimer's disease from MRI images with deep learning model [0.7673339435080445]
アルツハイマー病は世界中で認知症の最も一般的な原因である。
認知症の分類には、医学的履歴レビュー、神経心理学的テスト、MRI(MRI)などのアプローチが含まれる
本稿では,AD画像から重要な特徴を抽出するために,事前学習した畳み込みニューラルネットワークをDEMNET認知ネットワークに適用する。
論文 参考訳(メタデータ) (2024-09-27T15:07:26Z) - GFE-Mamba: Mamba-based AD Multi-modal Progression Assessment via Generative Feature Extraction from MCI [5.355943545567233]
アルツハイマー病(英語: Alzheimer's Disease、AD)は、軽度認知障害(MCI)から進行する可逆性神経変性疾患である。
生成特徴抽出(GFE)に基づく分類器GFE-Mambaを紹介する。
評価尺度、MRI、PETのデータを統合し、より深いマルチモーダル融合を可能にする。
GFE-MambaモデルがMCIからADへの変換予測に有効であることを示す。
論文 参考訳(メタデータ) (2024-07-22T15:22:33Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Transfer Learning and Class Decomposition for Detecting the Cognitive
Decline of Alzheimer Disease [0.0]
本稿では,SMRI画像からアルツハイマー病を検出するためのクラス分解を用いた転写学習手法を提案する。
提案モデルは,アルツハイマー病 (AD) と軽度認知障害 (MCI) と認知正常 (CN) の分類課題における最先端の成績を,文献から3%の精度で達成した。
論文 参考訳(メタデータ) (2023-01-31T09:44:52Z) - CNN-LSTM Based Multimodal MRI and Clinical Data Fusion for Predicting
Functional Outcome in Stroke Patients [1.5250925845050138]
脳卒中患者の管理において臨床結果予測は重要な役割を担っている。
機械学習の観点から見ると、大きな課題のひとつは異種データを扱うことだ。
本稿では,長い短期記憶(CNN-LSTM)に基づくアンサンブルモデルを提案する。
論文 参考訳(メタデータ) (2022-05-11T14:46:01Z) - Interpretability Aware Model Training to Improve Robustness against
Out-of-Distribution Magnetic Resonance Images in Alzheimer's Disease
Classification [8.050897403457995]
異なるMRIハードウェアから派生した分布外サンプルに対するロバスト性を改善するために,解釈可能性を考慮した対向訓練システムを提案する。
本報告では, 分布外のサンプルに対して有望な性能を示す予備的な結果を示す。
論文 参考訳(メタデータ) (2021-11-15T04:42:47Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
深層学習法はmr画像再構成において優れた性能をもたらすことが示されている。
これらの方法は、高い取得コストと医療データプライバシー規制のために収集および共有が困難である大量のデータを必要とします。
我々は,異なる施設で利用可能なmrデータを活用し,患者のプライバシーを保ちながら,連合学習(fl)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T03:04:40Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。