Time-aware Graph Neural Networks for Entity Alignment between Temporal
Knowledge Graphs
- URL: http://arxiv.org/abs/2203.02150v1
- Date: Fri, 4 Mar 2022 06:41:51 GMT
- Title: Time-aware Graph Neural Networks for Entity Alignment between Temporal
Knowledge Graphs
- Authors: Chengjin_Xu, Fenglong Su, Jens Lehmann
- Abstract summary: We propose a novel time-aware entity alignment approach based on Graph Neural Networks (TEA-GNN)
Our method significantly outperforms the state-of-the-art methods due to the inclusion of time information.
- Score: 8.739319749401819
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Entity alignment aims to identify equivalent entity pairs between different
knowledge graphs (KGs). Recently, the availability of temporal KGs (TKGs) that
contain time information created the need for reasoning over time in such TKGs.
Existing embedding-based entity alignment approaches disregard time information
that commonly exists in many large-scale KGs, leaving much room for
improvement. In this paper, we focus on the task of aligning entity pairs
between TKGs and propose a novel Time-aware Entity Alignment approach based on
Graph Neural Networks (TEA-GNN). We embed entities, relations and timestamps of
different KGs into a vector space and use GNNs to learn entity representations.
To incorporate both relation and time information into the GNN structure of our
model, we use a time-aware attention mechanism which assigns different weights
to different nodes with orthogonal transformation matrices computed from
embeddings of the relevant relations and timestamps in a neighborhood.
Experimental results on multiple real-world TKG datasets show that our method
significantly outperforms the state-of-the-art methods due to the inclusion of
time information.
Related papers
- Learning Granularity Representation for Temporal Knowledge Graph Completion [2.689675451882683]
Temporal Knowledge Graphs (TKGs) incorporate temporal information to reflect the dynamic structural knowledge and evolutionary patterns of real-world facts.
This paper proposes textbfLearning textbfGranularity textbfRepresentation (termed $mathsfLGRe$) for TKG completion.
It comprises two main components: Granularity Learning (GRL) and Adaptive Granularity Balancing (AGB)
arXiv Detail & Related papers (2024-08-27T08:19:34Z) - Learning Multi-graph Structure for Temporal Knowledge Graph Reasoning [3.3571415078869955]
This paper proposes an innovative reasoning approach that focuses on Learning Multi-graph Structure (LMS)
LMS incorporates an adaptive gate for merging entity representations both along and across timestamps effectively.
It also integrates timestamp semantics into graph attention calculations and time-aware decoders.
arXiv Detail & Related papers (2023-12-04T08:23:09Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Meta-Learning Based Knowledge Extrapolation for Temporal Knowledge Graph [4.103806361930888]
Temporal KGs (TKGs) extend traditional Knowledge Graphs by associating static triples with timestamps forming quadruples.
We propose a Meta-Learning based Temporal Knowledge Graph Extrapolation (MTKGE) model, which is trained on link prediction tasks sampled from the existing TKGs.
We show that MTKGE consistently outperforms both the existing state-of-the-art models for knowledge graph extrapolation.
arXiv Detail & Related papers (2023-02-11T09:52:26Z) - A Simple Temporal Information Matching Mechanism for Entity Alignment
Between Temporal Knowledge Graphs [18.451872649228196]
We propose a simple graph neural network (GNN) model combined with a temporal information matching mechanism.
We also propose a method to generate unsupervised alignment seeds via the temporal information of TKG.
arXiv Detail & Related papers (2022-09-20T12:27:34Z) - Dynamic Relation Discovery and Utilization in Multi-Entity Time Series
Forecasting [92.32415130188046]
In many real-world scenarios, there could exist crucial yet implicit relation between entities.
We propose an attentional multi-graph neural network with automatic graph learning (A2GNN) in this work.
arXiv Detail & Related papers (2022-02-18T11:37:04Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Temporal Knowledge Graph Reasoning Based on Evolutional Representation
Learning [59.004025528223025]
Key to predict future facts is to thoroughly understand the historical facts.
A TKG is actually a sequence of KGs corresponding to different timestamps.
We propose a novel Recurrent Evolution network based on Graph Convolution Network (GCN)
arXiv Detail & Related papers (2021-04-21T05:12:21Z) - Graph Attention Recurrent Neural Networks for Correlated Time Series
Forecasting -- Full version [16.22449727526222]
We consider a setting where multiple entities inter-act with each other over time and the time-varying statuses of the entities are represented as correlated time series.
To enable accurate forecasting on correlated time series, we proposes graph attention recurrent neural networks.
Experiments on a large real-world speed time series data set suggest that the proposed method is effective and outperforms the state-of-the-art in most settings.
arXiv Detail & Related papers (2021-03-19T12:15:37Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.