Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data
- URL: http://arxiv.org/abs/2309.05305v3
- Date: Wed, 10 Jan 2024 07:14:00 GMT
- Title: Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data
- Authors: Yucheng Wang, Yuecong Xu, Jianfei Yang, Min Wu, Xiaoli Li, Lihua Xie,
Zhenghua Chen
- Abstract summary: We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
- Score: 50.84488941336865
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multivariate Time-Series (MTS) data is crucial in various application fields.
With its sequential and multi-source (multiple sensors) properties, MTS data
inherently exhibits Spatial-Temporal (ST) dependencies, involving temporal
correlations between timestamps and spatial correlations between sensors in
each timestamp. To effectively leverage this information, Graph Neural
Network-based methods (GNNs) have been widely adopted. However, existing
approaches separately capture spatial dependency and temporal dependency and
fail to capture the correlations between Different sEnsors at Different
Timestamps (DEDT). Overlooking such correlations hinders the comprehensive
modelling of ST dependencies within MTS data, thus restricting existing GNNs
from learning effective representations. To address this limitation, we propose
a novel method called Fully-Connected Spatial-Temporal Graph Neural Network
(FC-STGNN), including two key components namely FC graph construction and FC
graph convolution. For graph construction, we design a decay graph to connect
sensors across all timestamps based on their temporal distances, enabling us to
fully model the ST dependencies by considering the correlations between DEDT.
Further, we devise FC graph convolution with a moving-pooling GNN layer to
effectively capture the ST dependencies for learning effective representations.
Extensive experiments show the effectiveness of FC-STGNN on multiple MTS
datasets compared to SOTA methods. The code is available at
https://github.com/Frank-Wang-oss/FCSTGNN.
Related papers
- Graph-Aware Contrasting for Multivariate Time-Series Classification [50.84488941336865]
Existing contrastive learning methods mainly focus on achieving temporal consistency with temporal augmentation and contrasting techniques.
We propose Graph-Aware Contrasting for spatial consistency across MTS data.
Our proposed method achieves state-of-the-art performance on various MTS classification tasks.
arXiv Detail & Related papers (2023-09-11T02:35:22Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Edge-Varying Fourier Graph Networks for Multivariate Time Series
Forecasting [46.76885997673142]
We build an efficient graph convolutional network for time-series variables.
A high-efficiency scale-free parameter learning scheme is derived for MTS analysis and forecasting.
Experiments show that EV-FGN outperforms state-of-the-art methods on seven real-world MTS datasets.
arXiv Detail & Related papers (2022-10-06T17:50:07Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Spectral Temporal Graph Neural Network for Multivariate Time-series
Forecasting [19.50001395081601]
StemGNN captures inter-series correlations and temporal dependencies.
It can be predicted effectively by convolution and sequential learning modules.
We conduct extensive experiments on ten real-world datasets to demonstrate the effectiveness of StemGNN.
arXiv Detail & Related papers (2021-03-13T13:44:20Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.