Exploring Scalable, Distributed Real-Time Anomaly Detection for Bridge
Health Monitoring
- URL: http://arxiv.org/abs/2203.02380v1
- Date: Fri, 4 Mar 2022 15:37:20 GMT
- Title: Exploring Scalable, Distributed Real-Time Anomaly Detection for Bridge
Health Monitoring
- Authors: Amirhossein Moallemi, Alessio Burrello, Davide Brunelli, Luca Benini
- Abstract summary: Modern real-time Structural Health Monitoring systems can generate a considerable amount of information.
Current cloud-based solutions cannot scale if the raw data has to be collected from thousands of buildings.
This paper presents a full-stack deployment of an efficient and scalable anomaly detection pipeline for SHM systems.
- Score: 15.920402427606959
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Modern real-time Structural Health Monitoring systems can generate a
considerable amount of information that must be processed and evaluated for
detecting early anomalies and generating prompt warnings and alarms about the
civil infrastructure conditions. The current cloud-based solutions cannot scale
if the raw data has to be collected from thousands of buildings. This paper
presents a full-stack deployment of an efficient and scalable anomaly detection
pipeline for SHM systems which does not require sending raw data to the cloud
but relies on edge computation. First, we benchmark three algorithmic
approaches of anomaly detection, i.e., Principal Component Analysis (PCA),
Fully-Connected AutoEncoder (FC-AE), and Convolutional AutoEncoder (C-AE).
Then, we deploy them on an edge-sensor, the STM32L4, with limited computing
capabilities. Our approach decreases network traffic by
$\approx8\cdot10^5\times$ , from 780KB/hour to less than 10 Bytes/hour for a
single installation and minimize network and cloud resource utilization,
enabling the scaling of the monitoring infrastructure. A real-life case study,
a highway bridge in Italy, demonstrates that combining near-sensor computation
of anomaly detection algorithms, smart pre-processing, and low-power wide-area
network protocols (LPWAN) we can greatly reduce data communication and cloud
computing costs, while anomaly detection accuracy is not adversely affected.
Related papers
- RIDE: Real-time Intrusion Detection via Explainable Machine Learning
Implemented in a Memristor Hardware Architecture [24.824596231020585]
We propose a packet-level network intrusion detection solution that makes use of Recurrent Autoencoders to integrate an arbitrary-length sequence of packets into a more compact joint feature embedding.
We show that our approach leads to an extremely efficient, real-time solution with high detection accuracy at the packet level.
arXiv Detail & Related papers (2023-11-27T17:30:19Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
We develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure.
First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module.
The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T06:19:11Z) - ARCADE: Adversarially Regularized Convolutional Autoencoder for Network
Anomaly Detection [0.0]
unsupervised anomaly-based deep learning detection system called ARCADE.
A convolutional Autoencoder (AE) is proposed that suits online detection in resource-constrained environments.
arXiv Detail & Related papers (2022-05-03T11:47:36Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Edge-Detect: Edge-centric Network Intrusion Detection using Deep Neural
Network [0.0]
Edge nodes are crucial for detection against multitudes of cyber attacks on Internet-of-Things endpoints.
We develop a novel light, fast and accurate 'Edge-Detect' model, which detects Denial of Service attack on edge nodes using DLM techniques.
arXiv Detail & Related papers (2021-02-03T04:24:34Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Near-chip Dynamic Vision Filtering for Low-Bandwidth Pedestrian
Detection [99.94079901071163]
This paper presents a novel end-to-end system for pedestrian detection using Dynamic Vision Sensors (DVSs)
We target applications where multiple sensors transmit data to a local processing unit, which executes a detection algorithm.
Our detector is able to perform a detection every 450 ms, with an overall testing F1 score of 83%.
arXiv Detail & Related papers (2020-04-03T17:36:26Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.