Near-chip Dynamic Vision Filtering for Low-Bandwidth Pedestrian
Detection
- URL: http://arxiv.org/abs/2004.01689v1
- Date: Fri, 3 Apr 2020 17:36:26 GMT
- Title: Near-chip Dynamic Vision Filtering for Low-Bandwidth Pedestrian
Detection
- Authors: Anthony Bisulco, Fernando Cladera Ojeda, Volkan Isler, Daniel D. Lee
- Abstract summary: This paper presents a novel end-to-end system for pedestrian detection using Dynamic Vision Sensors (DVSs)
We target applications where multiple sensors transmit data to a local processing unit, which executes a detection algorithm.
Our detector is able to perform a detection every 450 ms, with an overall testing F1 score of 83%.
- Score: 99.94079901071163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel end-to-end system for pedestrian detection using
Dynamic Vision Sensors (DVSs). We target applications where multiple sensors
transmit data to a local processing unit, which executes a detection algorithm.
Our system is composed of (i) a near-chip event filter that compresses and
denoises the event stream from the DVS, and (ii) a Binary Neural Network (BNN)
detection module that runs on a low-computation edge computing device (in our
case a STM32F4 microcontroller). We present the system architecture and provide
an end-to-end implementation for pedestrian detection in an office environment.
Our implementation reduces transmission size by up to 99.6% compared to
transmitting the raw event stream. The average packet size in our system is
only 1397 bits, while 307.2 kb are required to send an uncompressed DVS time
window. Our detector is able to perform a detection every 450 ms, with an
overall testing F1 score of 83%. The low bandwidth and energy properties of our
system make it ideal for IoT applications.
Related papers
- A distributed neural network architecture for dynamic sensor selection
with application to bandwidth-constrained body-sensor networks [53.022158485867536]
We propose a dynamic sensor selection approach for deep neural networks (DNNs)
It is able to derive an optimal sensor subset selection for each specific input sample instead of a fixed selection for the entire dataset.
We show how we can use this dynamic selection to increase the lifetime of a wireless sensor network (WSN) by imposing constraints on how often each node is allowed to transmit.
arXiv Detail & Related papers (2023-08-16T14:04:50Z) - HeteroEdge: Addressing Asymmetry in Heterogeneous Collaborative
Autonomous Systems [1.274065448486689]
We propose a self-adaptive optimization framework for a testbed comprising two Unmanned Ground Vehicles (UGVs) and two NVIDIA Jetson devices.
This framework efficiently manages multiple tasks (storage, processing, computation, transmission, inference) on heterogeneous nodes concurrently.
It involves compressing and masking input image frames, identifying similar frames, and profiling devices to obtain boundary conditions for optimization.
arXiv Detail & Related papers (2023-05-05T02:43:16Z) - An Embedded and Real-Time Pupil Detection Pipeline [2.23017937341178]
We introduce an open-source embedded system for wearable, non-invasive pupil detection in real-time.
Our system consists of a head-mounted eye tracker prototype, which combines two miniature camera systems with Raspberry Pi-based embedded system.
arXiv Detail & Related papers (2023-02-27T19:16:42Z) - Bandwidth-efficient distributed neural network architectures with
application to body sensor networks [73.02174868813475]
This paper describes a conceptual design methodology to design distributed neural network architectures.
We show that the proposed framework enables up to a factor 20 in bandwidth reduction with minimal loss.
While the application focus of this paper is on wearable brain-computer interfaces, the proposed methodology can be applied in other sensor network-like applications as well.
arXiv Detail & Related papers (2022-10-14T12:35:32Z) - Exploring Scalable, Distributed Real-Time Anomaly Detection for Bridge
Health Monitoring [15.920402427606959]
Modern real-time Structural Health Monitoring systems can generate a considerable amount of information.
Current cloud-based solutions cannot scale if the raw data has to be collected from thousands of buildings.
This paper presents a full-stack deployment of an efficient and scalable anomaly detection pipeline for SHM systems.
arXiv Detail & Related papers (2022-03-04T15:37:20Z) - A reconfigurable neural network ASIC for detector front-end data
compression at the HL-LHC [0.40690419770123604]
A neural network autoencoder model can be implemented in a radiation tolerant ASIC to perform lossy data compression.
This is the first radiation tolerant on-detector ASIC implementation of a neural network that has been designed for particle physics applications.
arXiv Detail & Related papers (2021-05-04T18:06:23Z) - Fast Motion Understanding with Spatiotemporal Neural Networks and
Dynamic Vision Sensors [99.94079901071163]
This paper presents a Dynamic Vision Sensor (DVS) based system for reasoning about high speed motion.
We consider the case of a robot at rest reacting to a small, fast approaching object at speeds higher than 15m/s.
We highlight the results of our system to a toy dart moving at 23.4m/s with a 24.73deg error in $theta$, 18.4mm average discretized radius prediction error, and 25.03% median time to collision prediction error.
arXiv Detail & Related papers (2020-11-18T17:55:07Z) - Binary DAD-Net: Binarized Driveable Area Detection Network for
Autonomous Driving [94.40107679615618]
This paper proposes a novel binarized driveable area detection network (binary DAD-Net)
It uses only binary weights and activations in the encoder, the bottleneck, and the decoder part.
It outperforms state-of-the-art semantic segmentation networks on public datasets.
arXiv Detail & Related papers (2020-06-15T07:09:01Z) - EBBINNOT: A Hardware Efficient Hybrid Event-Frame Tracker for Stationary
Dynamic Vision Sensors [5.674895233111088]
This paper presents a hybrid event-frame approach for detecting and tracking objects recorded by a stationary neuromorphic sensor.
To exploit the background removal property of a static DVS, we propose an event-based binary image creation that signals presence or absence of events in a frame duration.
This is the first time a stationary DVS based traffic monitoring solution is extensively compared to simultaneously recorded RGB frame-based methods.
arXiv Detail & Related papers (2020-05-31T03:01:35Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.