Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D
Networks for 3D Coherent Layer Segmentation of Retina OCT Images
- URL: http://arxiv.org/abs/2203.02390v1
- Date: Fri, 4 Mar 2022 15:55:09 GMT
- Title: Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D
Networks for 3D Coherent Layer Segmentation of Retina OCT Images
- Authors: Hong Liu, Dong Wei, Donghuan Lu, Yuexiang Li, Kai Ma, Liansheng Wang,
Yefeng Zheng
- Abstract summary: In this study, a novel framework based on hybrid 2D-3D convolutional neural networks (CNNs) is proposed to obtain continuous 3D retinal layer surfaces from OCT.
Our framework achieves superior results to state-of-the-art 2D methods in terms of both layer segmentation accuracy and cross-B-scan 3D continuity.
- Score: 33.99874168018807
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automated surface segmentation of retinal layer is important and challenging
in analyzing optical coherence tomography (OCT). Recently, many deep learning
based methods have been developed for this task and yield remarkable
performance. However, due to large spatial gap and potential mismatch between
the B-scans of OCT data, all of them are based on 2D segmentation of individual
B-scans, which may loss the continuity information across the B-scans. In
addition, 3D surface of the retina layers can provide more diagnostic
information, which is crucial in quantitative image analysis. In this study, a
novel framework based on hybrid 2D-3D convolutional neural networks (CNNs) is
proposed to obtain continuous 3D retinal layer surfaces from OCT. The 2D
features of individual B-scans are extracted by an encoder consisting of 2D
convolutions. These 2D features are then used to produce the alignment
displacement field and layer segmentation by two 3D decoders, which are coupled
via a spatial transformer module. The entire framework is trained end-to-end.
To the best of our knowledge, this is the first study that attempts 3D retinal
layer segmentation in volumetric OCT images based on CNNs. Experiments on a
publicly available dataset show that our framework achieves superior results to
state-of-the-art 2D methods in terms of both layer segmentation accuracy and
cross-B-scan 3D continuity, thus offering more clinical values than previous
works.
Related papers
- Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D
Networks for 3D Coherent Layer Segmentation of Retinal OCT Images with Full
and Sparse Annotations [32.69359482975795]
This work presents a novel framework based on hybrid 2D-3D convolutional neural networks (CNNs) to obtain continuous 3D retinal layer surfaces from OCT volumes.
Experiments on a synthetic dataset and three public clinical datasets show that our framework can effectively align the B-scans for potential motion correction.
arXiv Detail & Related papers (2023-12-04T08:32:31Z) - Spatiotemporal Modeling Encounters 3D Medical Image Analysis:
Slice-Shift UNet with Multi-View Fusion [0.0]
We propose a new 2D-based model dubbed Slice SHift UNet which encodes three-dimensional features at 2D CNN's complexity.
More precisely multi-view features are collaboratively learned by performing 2D convolutions along the three planes of a volume.
The effectiveness of our approach is validated in Multi-Modality Abdominal Multi-Organ axis (AMOS) and Multi-Atlas Labeling Beyond the Cranial Vault (BTCV) datasets.
arXiv Detail & Related papers (2023-07-24T14:53:23Z) - Self-supervised learning via inter-modal reconstruction and feature
projection networks for label-efficient 3D-to-2D segmentation [4.5206601127476445]
We propose a novel convolutional neural network (CNN) and self-supervised learning (SSL) method for label-efficient 3D-to-2D segmentation.
Results on different datasets demonstrate that the proposed CNN significantly improves the state of the art in scenarios with limited labeled data by up to 8% in Dice score.
arXiv Detail & Related papers (2023-07-06T14:16:25Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - Super Images -- A New 2D Perspective on 3D Medical Imaging Analysis [0.0]
We present a simple yet effective 2D method to handle 3D data while efficiently embedding the 3D knowledge during training.
Our method generates a super-resolution image by stitching slices side by side in the 3D image.
While attaining equal, if not superior, results to 3D networks utilizing only 2D counterparts, the model complexity is reduced by around threefold.
arXiv Detail & Related papers (2022-05-05T09:59:03Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Learning Joint 2D-3D Representations for Depth Completion [90.62843376586216]
We design a simple yet effective neural network block that learns to extract joint 2D and 3D features.
Specifically, the block consists of two domain-specific sub-networks that apply 2D convolution on image pixels and continuous convolution on 3D points.
arXiv Detail & Related papers (2020-12-22T22:58:29Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.