Super Images -- A New 2D Perspective on 3D Medical Imaging Analysis
- URL: http://arxiv.org/abs/2205.02847v2
- Date: Wed, 17 May 2023 07:16:28 GMT
- Title: Super Images -- A New 2D Perspective on 3D Medical Imaging Analysis
- Authors: Ikboljon Sobirov, Numan Saeed, and Mohammad Yaqub
- Abstract summary: We present a simple yet effective 2D method to handle 3D data while efficiently embedding the 3D knowledge during training.
Our method generates a super-resolution image by stitching slices side by side in the 3D image.
While attaining equal, if not superior, results to 3D networks utilizing only 2D counterparts, the model complexity is reduced by around threefold.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In medical imaging analysis, deep learning has shown promising results. We
frequently rely on volumetric data to segment medical images, necessitating the
use of 3D architectures, which are commended for their capacity to capture
interslice context. However, because of the 3D convolutions, max pooling,
up-convolutions, and other operations utilized in these networks, these
architectures are often more inefficient in terms of time and computation than
their 2D equivalents. Furthermore, there are few 3D pretrained model weights,
and pretraining is often difficult. We present a simple yet effective 2D method
to handle 3D data while efficiently embedding the 3D knowledge during training.
We propose transforming volumetric data into 2D super images and segmenting
with 2D networks to solve these challenges. Our method generates a
super-resolution image by stitching slices side by side in the 3D image. We
expect deep neural networks to capture and learn these properties spatially
despite losing depth information. This work aims to present a novel perspective
when dealing with volumetric data, and we test the hypothesis using CNN and ViT
networks as well as self-supervised pretraining. While attaining equal, if not
superior, results to 3D networks utilizing only 2D counterparts, the model
complexity is reduced by around threefold. Because volumetric data is
relatively scarce, we anticipate that our approach will entice more studies,
particularly in medical imaging analysis.
Related papers
- Cross-Dimensional Medical Self-Supervised Representation Learning Based on a Pseudo-3D Transformation [68.60747298865394]
We propose a new cross-dimensional SSL framework based on a pseudo-3D transformation (CDSSL-P3D)
Specifically, we introduce an image transformation based on the im2col algorithm, which converts 2D images into a format consistent with 3D data.
This transformation enables seamless integration of 2D and 3D data, and facilitates cross-dimensional self-supervised learning for 3D medical image analysis.
arXiv Detail & Related papers (2024-06-03T02:57:25Z) - Video Pretraining Advances 3D Deep Learning on Chest CT Tasks [63.879848037679224]
Pretraining on large natural image classification datasets has aided model development on data-scarce 2D medical tasks.
These 2D models have been surpassed by 3D models on 3D computer vision benchmarks.
We show video pretraining for 3D models can enable higher performance on smaller datasets for 3D medical tasks.
arXiv Detail & Related papers (2023-04-02T14:46:58Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - Joint Embedding of 2D and 3D Networks for Medical Image Anomaly
Detection [0.8122270502556374]
We develop a method for combining the strength of the 3D network and the strength of the 2D network through joint embedding.
We show that the proposed method achieves better performance in both classification and segmentation tasks compared to the SoTA method.
arXiv Detail & Related papers (2022-12-21T11:28:52Z) - Decomposing 3D Neuroimaging into 2+1D Processing for Schizophrenia
Recognition [25.80846093248797]
We propose to process the 3D data by a 2+1D framework so that we can exploit the powerful deep 2D Convolutional Neural Network (CNN) networks pre-trained on the huge ImageNet dataset for 3D neuroimaging recognition.
Specifically, 3D volumes of Magnetic Resonance Imaging (MRI) metrics are decomposed to 2D slices according to neighboring voxel positions.
Global pooling is applied to remove redundant information as the activation patterns are sparsely distributed over feature maps.
Channel-wise and slice-wise convolutions are proposed to aggregate the contextual information in the third dimension unprocessed by the 2D CNN model.
arXiv Detail & Related papers (2022-11-21T15:22:59Z) - Data Efficient 3D Learner via Knowledge Transferred from 2D Model [30.077342050473515]
We deal with the data scarcity challenge of 3D tasks by transferring knowledge from strong 2D models via RGB-D images.
We utilize a strong and well-trained semantic segmentation model for 2D images to augment RGB-D images with pseudo-label.
Our method already outperforms existing state-of-the-art that is tailored for 3D label efficiency.
arXiv Detail & Related papers (2022-03-16T09:14:44Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - 3D Self-Supervised Methods for Medical Imaging [7.65168530693281]
We propose 3D versions for five different self-supervised methods, in the form of proxy tasks.
Our methods facilitate neural network feature learning from unlabeled 3D images, aiming to reduce the required cost for expert annotation.
The developed algorithms are 3D Contrastive Predictive Coding, 3D Rotation prediction, 3D Jigsaw puzzles, Relative 3D patch location, and 3D Exemplar networks.
arXiv Detail & Related papers (2020-06-06T09:56:58Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
Large-scale human datasets with 3D ground-truth annotations are difficult to obtain in the wild.
We address this problem by augmenting existing 2D datasets with high-quality 3D pose fits.
The resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in-the-wild benchmarks.
arXiv Detail & Related papers (2020-04-07T20:21:18Z) - 2.75D: Boosting learning by representing 3D Medical imaging to 2D
features for small data [54.223614679807994]
3D convolutional neural networks (CNNs) have started to show superior performance to 2D CNNs in numerous deep learning tasks.
Applying transfer learning on 3D CNN is challenging due to a lack of publicly available pre-trained 3D models.
In this work, we proposed a novel 2D strategical representation of volumetric data, namely 2.75D.
As a result, 2D CNN networks can also be used to learn volumetric information.
arXiv Detail & Related papers (2020-02-11T08:24:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.