Bending the rules of low-temperature thermometry with periodic driving
- URL: http://arxiv.org/abs/2203.02436v3
- Date: Thu, 28 Apr 2022 16:28:17 GMT
- Title: Bending the rules of low-temperature thermometry with periodic driving
- Authors: Jonas Glatthard, Luis A. Correa
- Abstract summary: We show that near-resonant driving changes the power law that governs thermal sensitivity over a broad range of temperatures.
We demonstrate that periodic driving allows for a sensitivity improvement of several orders of magnitude in sub-nanokelvin temperature estimates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There exist severe limitations on the accuracy of low-temperature
thermometry, which poses a major challenge for future quantum-technological
applications. Low-temperature sensitivity might be manipulated by tailoring the
interactions between probe and sample. Unfortunately, the tunability of these
interactions is usually very restricted. Here, we focus on a more practical
solution to boost thermometric precision -- driving the probe. Specifically, we
solve for the limit cycle of a periodically modulated linear probe in an
equilibrium sample. We treat the probe-sample interactions \textit{exactly} and
hence, our results are valid for arbitrarily low temperatures $ T $ and any
spectral density. We find that weak near-resonant modulation strongly enhances
the signal-to-noise ratio of low-temperature measurements, while causing
minimal back action on the sample. Furthermore, we show that near-resonant
driving changes the power law that governs thermal sensitivity over a broad
range of temperatures, thus `bending' the fundamental precision limits and
enabling more sensitive low-temperature thermometry. We then focus on a
concrete example -- impurity thermometry in an atomic condensate. We
demonstrate that periodic driving allows for a sensitivity improvement of
several orders of magnitude in sub-nanokelvin temperature estimates drawn from
the density profile of the impurity atoms. We thus provide a feasible upgrade
that can be easily integrated into low-$T$ thermometry experiments.
Related papers
- Thermometry of Strongly Correlated Fermionic Quantum Systems using
Impurity Probes [0.0]
We study quantum impurity models as a platform for quantum thermometry.
A single quantum spin-1/2 impurity is coupled to an explicit, structured, fermionic thermal environment.
arXiv Detail & Related papers (2022-12-19T16:57:28Z) - Low-temperature quantum thermometry boosted by coherence generation [0.0]
We present a method for low-temperature measurement that improves thermal range and sensitivity by generating quantum coherence in a thermometer probe.
We use a two-level quantum system, or qubit, as our probe and prevent direct probe access to the sample by introducing a set of ancilla qubits as an interface.
arXiv Detail & Related papers (2022-11-10T10:12:58Z) - Measurement of the Low-temperature Loss Tangent of High-resistivity
Silicon with a High Q-factor Superconducting Resonator [58.720142291102135]
We present the direct loss tangent measurement of a high-resist intrinsicivity (100) silicon wafer in the temperature range from 70 mK to 1 K.
The measurement was performed using a technique that takes advantage of a high quality factor superconducting niobium resonator.
arXiv Detail & Related papers (2021-08-19T20:13:07Z) - Uninformed Bayesian Quantum Thermometry [0.0]
We study the Bayesian approach to thermometry with no prior knowledge about the expected temperature scale.
We propose two new estimators based on an optimization of relative deviations.
arXiv Detail & Related papers (2021-08-16T11:39:01Z) - Optimal nonequilibrium thermometry in Markovian environments [0.0]
We find that for a general class of sample-probe interactions the scaling of the measurement uncertainty is inversely proportional to the time of the process.
We show that the Lamb shift induced by the probe-sample interaction can play a relevant role in thermometry.
arXiv Detail & Related papers (2021-07-09T13:19:42Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Role of topology in determining the precision of a finite thermometer [58.720142291102135]
We find that low connectivity is a resource to build precise thermometers working at low temperatures.
We compare the precision achievable by position measurement to the optimal one, which itself corresponds to energy measurement.
arXiv Detail & Related papers (2021-04-21T17:19:42Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Real-time estimation of the optically detected magnetic resonance shift
in diamond quantum thermometry [47.50219326456544]
We investigate the real-time estimation protocols for the frequency shift of optically detected magnetic resonance (ODMR) of nitrogen-vacancy centers in nanodiamonds (NDs)
Efficiently integrating multipoint ODMR measurements and ND particle tracking into fluorescence microscopy has recently demonstrated stable monitoring of the temperature inside living animals.
arXiv Detail & Related papers (2020-06-12T01:44:35Z) - Bath-Induced Correlations Enhance Thermometry Precision at Low
Temperatures [0.0]
We study the role of bath-induced correlations in temperature estimation of cold bosonic baths.
Although classical, bath-induced correlations can lead to significant enhancement of precision for thermometry.
arXiv Detail & Related papers (2020-01-31T13:31:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.