Recursive Reasoning Graph for Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2203.02844v1
- Date: Sun, 6 Mar 2022 00:57:50 GMT
- Title: Recursive Reasoning Graph for Multi-Agent Reinforcement Learning
- Authors: Xiaobai Ma, David Isele, Jayesh K. Gupta, Kikuo Fujimura, Mykel J.
Kochenderfer
- Abstract summary: Multi-agent reinforcement learning (MARL) provides an efficient way for simultaneously learning policies for multiple agents interacting with each other.
Existing algorithms can suffer from an inability to accurately anticipate the influence of self-actions on other agents.
The proposed algorithm, referred to as the Recursive Reasoning Graph (R2G), shows state-of-the-art performance on multiple multi-agent particle and robotics games.
- Score: 44.890087638530524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent reinforcement learning (MARL) provides an efficient way for
simultaneously learning policies for multiple agents interacting with each
other. However, in scenarios requiring complex interactions, existing
algorithms can suffer from an inability to accurately anticipate the influence
of self-actions on other agents. Incorporating an ability to reason about other
agents' potential responses can allow an agent to formulate more effective
strategies. This paper adopts a recursive reasoning model in a
centralized-training-decentralized-execution framework to help learning agents
better cooperate with or compete against others. The proposed algorithm,
referred to as the Recursive Reasoning Graph (R2G), shows state-of-the-art
performance on multiple multi-agent particle and robotics games.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Active Legibility in Multiagent Reinforcement Learning [3.7828554251478734]
The legibility-oriented framework allows agents to conduct legible actions so as to help others optimise their behaviors.
The experimental results demonstrate that the new framework is more efficient and costs less training time compared to several multiagent reinforcement learning algorithms.
arXiv Detail & Related papers (2024-10-28T12:15:49Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
Diffusion model (DM) recently achieved huge success in various scenarios including offline reinforcement learning.
We propose MADiff, a novel generative multi-agent learning framework to tackle this problem.
Our experiments show the superior performance of MADiff compared to baseline algorithms in a wide range of multi-agent learning tasks.
arXiv Detail & Related papers (2023-05-27T02:14:09Z) - Graph Exploration for Effective Multi-agent Q-Learning [46.723361065955544]
This paper proposes an exploration technique for multi-agent reinforcement learning (MARL) with graph-based communication among agents.
We assume the individual rewards received by the agents are independent of the actions by the other agents, while their policies are coupled.
In the proposed framework, neighbouring agents collaborate to estimate the uncertainty about the state-action space in order to execute more efficient explorative behaviour.
arXiv Detail & Related papers (2023-04-19T10:28:28Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
Deep reinforcement learning (DRL) provides a promising approach for multi-agent cooperation through the interaction of the agents and environments.
Traditional DRL solutions suffer from the high dimensions of multiple agents with continuous action space during policy search.
We propose a hierarchical reinforcement learning approach with high-level decision-making and low-level individual control for efficient policy search.
arXiv Detail & Related papers (2022-06-25T19:09:29Z) - SA-MATD3:Self-attention-based multi-agent continuous control method in
cooperative environments [12.959163198988536]
Existing algorithms suffer from the problem of uneven learning degree with the increase of the number of agents.
A new structure for a multi-agent actor critic is proposed, and the self-attention mechanism is applied in the critic network.
The proposed algorithm makes full use of the samples in the replay memory buffer to learn the behavior of a class of agents.
arXiv Detail & Related papers (2021-07-01T08:15:05Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
In this paper, we cast the multi-agent interactions modeling problem into a multi-agent imitation learning framework.
We develop a Decentralized Adrial Imitation Learning algorithm with Correlated policies (CoDAIL)
Various experiments demonstrate that CoDAIL can better regenerate complex interactions close to the demonstrators.
arXiv Detail & Related papers (2020-01-04T17:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.