MIRROR: Differentiable Deep Social Projection for Assistive Human-Robot
Communication
- URL: http://arxiv.org/abs/2203.02877v1
- Date: Sun, 6 Mar 2022 05:01:00 GMT
- Title: MIRROR: Differentiable Deep Social Projection for Assistive Human-Robot
Communication
- Authors: Kaiqi Chen, Jeffrey Fong, Harold Soh
- Abstract summary: We present MIRROR, an approach to quickly learn human models from human demonstrations.
We also present a human-subject study using the CARLA simulator which shows that (i) MIRROR is able to scale to complex domains.
- Score: 18.711591679232367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Communication is a hallmark of intelligence. In this work, we present MIRROR,
an approach to (i) quickly learn human models from human demonstrations, and
(ii) use the models for subsequent communication planning in assistive
shared-control settings. MIRROR is inspired by social projection theory, which
hypothesizes that humans use self-models to understand others. Likewise, MIRROR
leverages self-models learned using reinforcement learning to bootstrap human
modeling. Experiments with simulated humans show that this approach leads to
rapid learning and more robust models compared to existing behavioral cloning
and state-of-the-art imitation learning methods. We also present a
human-subject study using the CARLA simulator which shows that (i) MIRROR is
able to scale to complex domains with high-dimensional observations and
complicated world physics and (ii) provides effective assistive communication
that enabled participants to drive more safely in adverse weather conditions.
Related papers
- PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
Existing work highlights the ability of Large Language Models to address complex reasoning tasks and mimic human communication.
We propose to investigate the use of LLMs to generate synthetic human demonstrations, which are then used to learn subrational agent policies.
We experimentally evaluate the ability of our framework to model sub-rationality through four simple scenarios.
arXiv Detail & Related papers (2024-02-13T19:46:39Z) - The Role of Higher-Order Cognitive Models in Active Learning [8.847360368647752]
We advocate for a new paradigm for active learning for human feedback.
We discuss how increasing level of agency results in qualitatively different forms of rational communication between an active learning system and a teacher.
arXiv Detail & Related papers (2024-01-09T07:39:36Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
Addressee Estimation is a skill essential for social robots to interact smoothly with humans.
Inspired by human perceptual skills, a deep-learning model for Addressee Estimation is designed, trained, and deployed on an iCub robot.
The study presents the procedure of such implementation and the performance of the model deployed in real-time human-robot interaction.
arXiv Detail & Related papers (2023-11-09T13:01:21Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
We propose the first framework to learn control policies for vision-based human-to-robot handovers.
We show significant performance gains over baselines on a simulation benchmark, sim-to-sim transfer and sim-to-real transfer.
arXiv Detail & Related papers (2023-03-30T17:58:36Z) - Large Language Models as Zero-Shot Human Models for Human-Robot Interaction [12.455647753787442]
Large-language models (LLMs) can act as zero-shot human models for human-robot interaction.
LLMs achieve performance comparable to purpose-built models.
We present one case study on a simulated trust-based table-clearing task.
arXiv Detail & Related papers (2023-03-06T23:16:24Z) - Improving Multimodal Interactive Agents with Reinforcement Learning from
Human Feedback [16.268581985382433]
An important goal in artificial intelligence is to create agents that can both interact naturally with humans and learn from their feedback.
Here we demonstrate how to use reinforcement learning from human feedback to improve upon simulated, embodied agents.
arXiv Detail & Related papers (2022-11-21T16:00:31Z) - MILD: Multimodal Interactive Latent Dynamics for Learning Human-Robot
Interaction [34.978017200500005]
We propose Multimodal Interactive Latent Dynamics (MILD) to address the problem of two-party physical Human-Robot Interactions (HRIs)
We learn the interaction dynamics from demonstrations, using Hidden Semi-Markov Models (HSMMs) to model the joint distribution of the interacting agents in the latent space of a Variational Autoencoder (VAE)
MILD generates more accurate trajectories for the controlled agent (robot) when conditioned on the observed agent's (human) trajectory.
arXiv Detail & Related papers (2022-10-22T11:25:11Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.