Large Language Models as Zero-Shot Human Models for Human-Robot Interaction
- URL: http://arxiv.org/abs/2303.03548v2
- Date: Wed, 02 Oct 2024 00:57:37 GMT
- Title: Large Language Models as Zero-Shot Human Models for Human-Robot Interaction
- Authors: Bowen Zhang, Harold Soh,
- Abstract summary: Large-language models (LLMs) can act as zero-shot human models for human-robot interaction.
LLMs achieve performance comparable to purpose-built models.
We present one case study on a simulated trust-based table-clearing task.
- Score: 12.455647753787442
- License:
- Abstract: Human models play a crucial role in human-robot interaction (HRI), enabling robots to consider the impact of their actions on people and plan their behavior accordingly. However, crafting good human models is challenging; capturing context-dependent human behavior requires significant prior knowledge and/or large amounts of interaction data, both of which are difficult to obtain. In this work, we explore the potential of large-language models (LLMs) -- which have consumed vast amounts of human-generated text data -- to act as zero-shot human models for HRI. Our experiments on three social datasets yield promising results; the LLMs are able to achieve performance comparable to purpose-built models. That said, we also discuss current limitations, such as sensitivity to prompts and spatial/numerical reasoning mishaps. Based on our findings, we demonstrate how LLM-based human models can be integrated into a social robot's planning process and applied in HRI scenarios. Specifically, we present one case study on a simulated trust-based table-clearing task and replicate past results that relied on custom models. Next, we conduct a new robot utensil-passing experiment (n = 65) where preliminary results show that planning with a LLM-based human model can achieve gains over a basic myopic plan. In summary, our results show that LLMs offer a promising (but incomplete) approach to human modeling for HRI.
Related papers
- PARTNR: A Benchmark for Planning and Reasoning in Embodied Multi-agent Tasks [57.89516354418451]
We present a benchmark for Planning And Reasoning Tasks in humaN-Robot collaboration (PARTNR)
We employ a semi-automated task generation pipeline using Large Language Models (LLMs)
We analyze state-of-the-art LLMs on PARTNR tasks, across the axes of planning, perception and skill execution.
arXiv Detail & Related papers (2024-10-31T17:53:12Z) - How Aligned are Generative Models to Humans in High-Stakes Decision-Making? [10.225573060836478]
Large generative models (LMs) are increasingly being considered for high-stakes decision-making.
This work considers how such models compare to humans and predictive AI models on a specific case of recidivism prediction.
arXiv Detail & Related papers (2024-10-20T19:00:59Z) - MATRIX: Multi-Agent Trajectory Generation with Diverse Contexts [47.12378253630105]
We study trajectory-level data generation for multi-human or human-robot interaction scenarios.
We propose a learning-based automatic trajectory generation model, which we call Multi-Agent TRajectory generation with dIverse conteXts (MATRIX)
arXiv Detail & Related papers (2024-03-09T23:28:54Z) - Human Simulacra: Benchmarking the Personification of Large Language Models [38.21708264569801]
Large language models (LLMs) are recognized as systems that closely mimic aspects of human intelligence.
This paper introduces a framework for constructing virtual characters' life stories from the ground up.
Experimental results demonstrate that our constructed simulacra can produce personified responses that align with their target characters.
arXiv Detail & Related papers (2024-02-28T09:11:14Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
Existing work highlights the ability of Large Language Models to address complex reasoning tasks and mimic human communication.
We propose to investigate the use of LLMs to generate synthetic human demonstrations, which are then used to learn subrational agent policies.
We experimentally evaluate the ability of our framework to model sub-rationality through four simple scenarios.
arXiv Detail & Related papers (2024-02-13T19:46:39Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - MILD: Multimodal Interactive Latent Dynamics for Learning Human-Robot
Interaction [34.978017200500005]
We propose Multimodal Interactive Latent Dynamics (MILD) to address the problem of two-party physical Human-Robot Interactions (HRIs)
We learn the interaction dynamics from demonstrations, using Hidden Semi-Markov Models (HSMMs) to model the joint distribution of the interacting agents in the latent space of a Variational Autoencoder (VAE)
MILD generates more accurate trajectories for the controlled agent (robot) when conditioned on the observed agent's (human) trajectory.
arXiv Detail & Related papers (2022-10-22T11:25:11Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
Planning motions that take human comfort into account is not a part of the human-robot handover process.
We propose to generate smooth motions via an efficient model-predictive control framework.
We conduct human-to-robot handover experiments on a diverse set of objects with several users.
arXiv Detail & Related papers (2022-03-31T23:08:20Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.