論文の概要: Domain Adaptation with Factorizable Joint Shift
- arxiv url: http://arxiv.org/abs/2203.02902v1
- Date: Sun, 6 Mar 2022 07:58:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-08 17:09:07.036910
- Title: Domain Adaptation with Factorizable Joint Shift
- Title(参考訳): 因子化可能なジョイントシフトによる領域適応
- Authors: Hao He, Yuzhe Yang, Hao Wang
- Abstract要約: 本稿では、サンプリングバイアスの共存を扱うために、新しい仮定であるFacterizable Joint Shift (FJS)を提案する。
FJSは2つの要因間のバイアスの独立を前提としている。
また,共同重要度推定器を得るための識別学習目的であるJA(Joint Importance Aligning)を提案する。
- 参考スコア(独自算出の注目度): 18.95213249351176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing domain adaptation (DA) usually assumes the domain shift comes from
either the covariates or the labels. However, in real-world applications,
samples selected from different domains could have biases in both the
covariates and the labels. In this paper, we propose a new assumption,
Factorizable Joint Shift (FJS), to handle the co-existence of sampling bias in
covariates and labels. Although allowing for the shift from both sides, FJS
assumes the independence of the bias between the two factors. We provide
theoretical and empirical understandings about when FJS degenerates to prior
assumptions and when it is necessary. We further propose Joint Importance
Aligning (JIA), a discriminative learning objective to obtain joint importance
estimators for both supervised and unsupervised domain adaptation. Our method
can be seamlessly incorporated with existing domain adaptation algorithms for
better importance estimation and weighting on the training data. Experiments on
a synthetic dataset demonstrate the advantage of our method.
- Abstract(参考訳): 既存のドメイン適応(DA)は通常、ドメインシフトは共変量またはラベルから生じると仮定する。
しかし、現実世界のアプリケーションでは、異なるドメインから選択されたサンプルは、共変量とラベルの両方にバイアスを持つ可能性がある。
本稿では,共変量およびラベルにおけるサンプリングバイアスの共存を扱うための新しい仮定であるFacterizable Joint Shift (FJS)を提案する。
双方からのシフトを許容する一方で、FJSは2つの要因間のバイアスの独立を前提としている。
我々は、FJSがいつ以前の仮定に縮退し、いつ必要になるかについて、理論的、実証的な理解を提供する。
さらに,教師付き領域適応と教師なし領域適応の両面において,共同重要度推定を行うための識別学習目的であるJA(Joint Importance Aligning)を提案する。
提案手法は既存の領域適応アルゴリズムにシームレスに組み込むことで,トレーニングデータの重み付けと重要度を推定できる。
合成データセットの実験は,本手法の利点を実証している。
関連論文リスト
- Proxy Methods for Domain Adaptation [78.03254010884783]
プロキシ変数は、遅延変数を明示的にリカバリしたりモデル化したりすることなく、分散シフトへの適応を可能にする。
両設定の複雑な分散シフトに適応する2段階のカーネル推定手法を開発した。
論文 参考訳(メタデータ) (2024-03-12T09:32:41Z) - Bidirectional Domain Mixup for Domain Adaptive Semantic Segmentation [73.3083304858763]
本稿では,ドメイン適応型セマンティックセグメンテーションタスクにおけるミックスアップの影響を系統的に研究する。
具体的には、ドメインミックスアップをカットとペーストという2ステップで実現します。
フレームワークの主なコンポーネントを実証的に検証するために、広範囲にわたるアブレーション実験を行います。
論文 参考訳(メタデータ) (2023-03-17T05:22:44Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Towards Backwards-Compatible Data with Confounded Domain Adaptation [0.0]
一般化ラベルシフト(GLS)を変更することで、汎用データの後方互換性を実現する。
本稿では,ソースとターゲット条件分布のばらつきを最小限に抑えた新しい枠組みを提案する。
ガウス逆Kulback-Leibler分散と最大平均誤差を用いた具体的実装を提供する。
論文 参考訳(メタデータ) (2022-03-23T20:53:55Z) - Instrumental Variable-Driven Domain Generalization with Unobserved
Confounders [53.735614014067394]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインから、目に見えないターゲットドメインをうまく一般化できるモデルを学ぶことを目的としている。
観測不能な共同創設者のバイアスを2段階学習で除去し,インストゥルメンタル変数駆動型DG法(IV-DG)を提案する。
第1段階では、あるドメインの入力特徴の条件分布を他のドメインの入力特徴の条件分布として学習する。
第2段階では,ラベルと学習条件分布の関係を推定する。
論文 参考訳(メタデータ) (2021-10-04T13:32:57Z) - Semantic Concentration for Domain Adaptation [23.706231329913113]
ドメイン適応(DA)は、ラベル豊富なソースドメインから関連するがラベルのないターゲットドメインへの知識転送によるラベルアノテーションとデータセットバイアスの問題に対する道を開く。
DA手法の主流は、2つのドメインの特徴分布を整列させることである。
本稿では,ドメイン適応のためのセマンティック集中モデルを提案する。
論文 参考訳(メタデータ) (2021-08-12T13:04:36Z) - On Universal Black-Box Domain Adaptation [53.7611757926922]
実践的な展開という観点から,ドメイン適応の最小限の制約条件について検討する。
ソースモデルのインターフェースのみがターゲットドメインで利用可能であり、2つのドメイン間のラベル空間関係が異なることや未知であることが許されている。
対象試料の局所近傍における予測の整合性によって正規化された自己訓練フレームワークに統一することを提案する。
論文 参考訳(メタデータ) (2021-04-10T02:21:09Z) - Robust Fairness under Covariate Shift [11.151913007808927]
保護グループメンバーシップに関して公正な予測を行うことは、分類アルゴリズムの重要な要件となっている。
本稿では,ターゲット性能の面で最悪のケースに対して頑健な予測値を求める手法を提案する。
論文 参考訳(メタデータ) (2020-10-11T04:42:01Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - NestedVAE: Isolating Common Factors via Weak Supervision [45.366986365879505]
我々は、バイアス低減の課題と、ドメイン間で共通する分離要因の関係を同定する。
共通因子を分離するために、潜伏変数モデルの理論と情報ボトルネック理論を組み合わせる。
共有重みを持つ2つの外部VAEは入力を再構成し、潜伏空間を推論し、一方、ネストされたVAEはペア化された画像の潜伏表現から1つの画像の潜伏表現を再構成しようとする。
論文 参考訳(メタデータ) (2020-02-26T15:49:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。