Scalable Uncertainty Quantification for Deep Operator Networks using
Randomized Priors
- URL: http://arxiv.org/abs/2203.03048v1
- Date: Sun, 6 Mar 2022 20:48:16 GMT
- Title: Scalable Uncertainty Quantification for Deep Operator Networks using
Randomized Priors
- Authors: Yibo Yang, Georgios Kissas, Paris Perdikaris
- Abstract summary: We present a simple and effective approach for posterior uncertainty quantification in deep operator networks (DeepONets)
We adopt a frequentist approach based on randomized prior ensembles, and put forth an efficient vectorized implementation for fast parallel inference on accelerated hardware.
- Score: 14.169588600819546
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a simple and effective approach for posterior uncertainty
quantification in deep operator networks (DeepONets); an emerging paradigm for
supervised learning in function spaces. We adopt a frequentist approach based
on randomized prior ensembles, and put forth an efficient vectorized
implementation for fast parallel inference on accelerated hardware. Through a
collection of representative examples in computational mechanics and climate
modeling, we show that the merits of the proposed approach are fourfold. (1) It
can provide more robust and accurate predictions when compared against
deterministic DeepONets. (2) It shows great capability in providing reliable
uncertainty estimates on scarce data-sets with multi-scale function pairs. (3)
It can effectively detect out-of-distribution and adversarial examples. (4) It
can seamlessly quantify uncertainty due to model bias, as well as noise
corruption in the data. Finally, we provide an optimized JAX library called
{\em UQDeepONet} that can accommodate large model architectures, large ensemble
sizes, as well as large data-sets with excellent parallel performance on
accelerated hardware, thereby enabling uncertainty quantification for DeepONets
in realistic large-scale applications.
Related papers
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
We propose a new distributed dynamic safe screening (DDSS) method for sparsity regularized models and apply it on shared-memory and distributed-memory architecture respectively.
We prove that the proposed method achieves the linear convergence rate with lower overall complexity and can eliminate almost all the inactive features in a finite number of iterations almost surely.
arXiv Detail & Related papers (2022-04-23T02:45:55Z) - DeepONet-Grid-UQ: A Trustworthy Deep Operator Framework for Predicting
the Power Grid's Post-Fault Trajectories [10.972093683444648]
This paper proposes a new data-driven method for the reliable prediction of power system post-fault trajectories.
The proposed method is based on the fundamentally new concept of Deep Operator Networks (DeepONets)
arXiv Detail & Related papers (2022-02-15T04:01:57Z) - On Efficient Uncertainty Estimation for Resource-Constrained Mobile
Applications [0.0]
Predictive uncertainty supplements model predictions and enables improved functionality of downstream tasks.
We tackle this problem by building upon Monte Carlo Dropout (MCDO) models using the Axolotl framework.
We conduct experiments on (1) a multi-class classification task using the CIFAR10 dataset, and (2) a more complex human body segmentation task.
arXiv Detail & Related papers (2021-11-11T22:24:15Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
Complex Event Recognition (CER) systems have become popular in the past two decades due to their ability to "instantly" detect patterns on real-time streams of events.
There is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CER engine.
We present a formal framework that attempts to address the issue of Complex Event Forecasting.
arXiv Detail & Related papers (2021-09-01T09:52:31Z) - Convolutional Sparse Coding Fast Approximation with Application to
Seismic Reflectivity Estimation [9.005280130480308]
We propose a speed-up upgraded version of the classic iterative thresholding algorithm, that produces a good approximation of the convolutional sparse code within 2-5 iterations.
The performance of the proposed solution is demonstrated via the seismic inversion problem in both synthetic and real data scenarios.
arXiv Detail & Related papers (2021-06-29T12:19:07Z) - Bayesian Optimization Meets Laplace Approximation for Robotic
Introspection [41.117361086267806]
We introduce a scalable Laplace Approximation (LA) technique to make Deep Neural Networks (DNNs) more introspective.
In particular, we propose a novel Bayesian Optimization (BO) algorithm to mitigate their tendency of under-fitting the true weight posterior.
We show that the proposed framework can be scaled up to large datasets and architectures.
arXiv Detail & Related papers (2020-10-30T09:28:10Z) - Probabilistic Neighbourhood Component Analysis: Sample Efficient
Uncertainty Estimation in Deep Learning [25.8227937350516]
We show that uncertainty estimation capability of state-of-the-art BNNs and Deep Ensemble models degrades significantly when the amount of training data is small.
We propose a probabilistic generalization of the popular sample-efficient non-parametric kNN approach.
Our approach enables deep kNN to accurately quantify underlying uncertainties in its prediction.
arXiv Detail & Related papers (2020-07-18T21:36:31Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.