Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions
- URL: http://arxiv.org/abs/2007.13481v1
- Date: Mon, 29 Jun 2020 13:36:52 GMT
- Title: Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions
- Authors: Ahmed M. Alaa, Mihaela van der Schaar
- Abstract summary: We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
- Score: 121.10450359856242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models achieve high predictive accuracy across a broad spectrum
of tasks, but rigorously quantifying their predictive uncertainty remains
challenging. Usable estimates of predictive uncertainty should (1) cover the
true prediction targets with high probability, and (2) discriminate between
high- and low-confidence prediction instances. Existing methods for uncertainty
quantification are based predominantly on Bayesian neural networks; these may
fall short of (1) and (2) -- i.e., Bayesian credible intervals do not guarantee
frequentist coverage, and approximate posterior inference undermines
discriminative accuracy. In this paper, we develop the discriminative jackknife
(DJ), a frequentist procedure that utilizes influence functions of a model's
loss functional to construct a jackknife (or leave-one-out) estimator of
predictive confidence intervals. The DJ satisfies (1) and (2), is applicable to
a wide range of deep learning models, is easy to implement, and can be applied
in a post-hoc fashion without interfering with model training or compromising
its accuracy. Experiments demonstrate that DJ performs competitively compared
to existing Bayesian and non-Bayesian regression baselines.
Related papers
- Confidence Intervals and Simultaneous Confidence Bands Based on Deep Learning [0.36832029288386137]
We provide a valid non-parametric bootstrap method that correctly disentangles data uncertainty from the noise inherent in the adopted optimization algorithm.
The proposed ad-hoc method can be easily integrated into any deep neural network without interfering with the training process.
arXiv Detail & Related papers (2024-06-20T05:51:37Z) - Error-Driven Uncertainty Aware Training [7.702016079410588]
Error-Driven Uncertainty Aware Training aims to enhance the ability of neural classifiers to estimate their uncertainty correctly.
The EUAT approach operates during the model's training phase by selectively employing two loss functions depending on whether the training examples are correctly or incorrectly predicted.
We evaluate EUAT using diverse neural models and datasets in the image recognition domains considering both non-adversarial and adversarial settings.
arXiv Detail & Related papers (2024-05-02T11:48:14Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Training Uncertainty-Aware Classifiers with Conformalized Deep Learning [7.837881800517111]
Deep neural networks are powerful tools to detect hidden patterns in data and leverage them to make predictions, but they are not designed to understand uncertainty.
We develop a novel training algorithm that can lead to more dependable uncertainty estimates, without sacrificing predictive power.
arXiv Detail & Related papers (2022-05-12T05:08:10Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Locally Valid and Discriminative Confidence Intervals for Deep Learning
Models [37.57296694423751]
Uncertainty information should be valid (guaranteeing coverage) and discriminative (more uncertain when the expected risk is high)
Most existing Bayesian methods lack frequentist coverage guarantees and usually affect model performance.
We propose Locally Valid and Discriminative confidence intervals (LVD), a simple, efficient and lightweight method to construct discriminative confidence intervals (CIs) for almost any deep learning model.
arXiv Detail & Related papers (2021-06-01T04:39:56Z) - Deep Bayesian Gaussian Processes for Uncertainty Estimation in
Electronic Health Records [30.65770563934045]
We merge features of the deep Bayesian learning framework with deep kernel learning to leverage the strengths of both methods for more comprehensive uncertainty estimation.
We show that our method is less susceptible to making overconfident predictions, especially for the minority class in imbalanced datasets.
arXiv Detail & Related papers (2020-03-23T10:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.