Nonequilibrium many-body dynamics in supersymmetric quenching
- URL: http://arxiv.org/abs/2203.03130v2
- Date: Thu, 21 Jul 2022 07:36:15 GMT
- Title: Nonequilibrium many-body dynamics in supersymmetric quenching
- Authors: Christopher Campbell, Thom\'as Fogarty, Thomas Busch
- Abstract summary: We study the dynamics induced by quenching an ultracold quantum many-body system between two supersymmetric Hamiltonians.
We show that the dynamics originating from this can be conveniently described using knowledge about the initial state only.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the dynamics induced by quenching an ultracold quantum many-body
system between two supersymmetric Hamiltonians. Such a quench can be created by
carefully changing the external trapping potential and leads to a situation
where the eigenspectra before and after the quench are nearly identical. We
show that the dynamics originating from this can be conveniently described
using knowledge about the initial state only and apply this insight to the
specific example of a fermionic gas that is initially trapped in an infinite
box potential. Quenching to different, higher order supersymmetric partners
potentials we observe the appearance of many-body revivals in the survival
probability and show that some of these are robust at finite temperatures. This
is in contrast to the well known Talbot effect, which is the standard example
for quenching into a system with a quadratic spectrum.
Related papers
- Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Stable infinite-temperature eigenstates in SU(2)-symmetric nonintegrable models [0.0]
A class of nonintegrable bond-staggered models is endowed with a large number of zero-energy eigenstates and possesses a non-Abelian internal symmetry.
We show that few-magnon zero-energy states have an exact analytical description, allowing us to build a basis of low-entangled fixed-separation states.
arXiv Detail & Related papers (2024-07-16T17:48:47Z) - Dynamics of Pseudoentanglement [0.03320194947871346]
dynamics of quantum entanglement plays a central role in explaining the emergence of thermal equilibrium in isolated many-body systems.
Recent works have introduced a notion of pseudoentanglement describing ensembles of many-body states.
This prompts the question: how much entanglement is truly necessary to achieve thermal equilibrium in quantum systems?
arXiv Detail & Related papers (2024-03-14T17:54:27Z) - Exploring Hilbert-Space Fragmentation on a Superconducting Processor [23.39066473461786]
Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity.
Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization.
Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits.
arXiv Detail & Related papers (2024-03-14T04:39:14Z) - Microscopic origin of the quantum Mpemba effect in integrable systems [0.0]
Mpemba effect states that non-equilibrium states may relax faster when they are further from equilibrium.
We study a quantum version of the Mpemba effect that takes place in closed body systems with a U(1) conserved charge.
arXiv Detail & Related papers (2023-10-06T17:59:17Z) - Duality between open systems and closed bilayer systems, and thermofield double states as quantum many-body scars [49.1574468325115]
We find a duality between open many-body systems governed by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation.
Under this duality, the identity operator on the open system side maps to the thermofield double state.
We identify broad classes of many-body open systems with nontrivial explicit eigen operators $Q$ of the Lindbladian superoperator.
arXiv Detail & Related papers (2023-04-06T15:38:53Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Non-Abelian symmetry can increase entanglement entropy [62.997667081978825]
We quantify the effects of charges' noncommutation on Page curves.
We show analytically and numerically that the noncommuting-charge case has more entanglement.
arXiv Detail & Related papers (2022-09-28T18:00:00Z) - Nontrivial damping of quantum many-body dynamics [0.0]
We show that a nontrivial damping in the Schr"odinger picture can emerge if the dynamics in the unperturbed system possesses rich features.
We substantiate our theoretical arguments by large-scale numerical simulations of charge transport in the extended Fermi-Hubbard chain.
arXiv Detail & Related papers (2021-03-11T12:58:39Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - On the complex behaviour of the density in composite quantum systems [62.997667081978825]
We study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system.
We prove that it is a non-perturbative property and we find out a large/small coupling constant duality.
Inspired by the proof of KAM theorem, we are able to deal with this problem by introducing a cut-off in energies that eliminates these small denominators.
arXiv Detail & Related papers (2020-04-14T21:41:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.