Dynamics of Pseudoentanglement
- URL: http://arxiv.org/abs/2403.09619v2
- Date: Wed, 25 Sep 2024 18:21:53 GMT
- Title: Dynamics of Pseudoentanglement
- Authors: Xiaozhou Feng, Matteo Ippoliti,
- Abstract summary: dynamics of quantum entanglement plays a central role in explaining the emergence of thermal equilibrium in isolated many-body systems.
Recent works have introduced a notion of pseudoentanglement describing ensembles of many-body states.
This prompts the question: how much entanglement is truly necessary to achieve thermal equilibrium in quantum systems?
- Score: 0.03320194947871346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dynamics of quantum entanglement plays a central role in explaining the emergence of thermal equilibrium in isolated many-body systems. However, entanglement is notoriously hard to measure: recent works have introduced a notion of pseudoentanglement describing ensembles of many-body states that, while only weakly entangled, cannot be efficiently distinguished from states with much higher entanglement. This prompts the question: how much entanglement is truly necessary to achieve thermal equilibrium in quantum systems? In this work we address this question by introducing random circuit models of quantum dynamics that, at late times, equilibrate to pseudoentangled ensembles -- a phenomenon we name pseudothermalization. These models replicate all the efficiently observable predictions of thermal equilibrium, while generating only a small amount of entanglement, thus deviating from the "maximum-entropy principle" that underpins thermodynamics. We examine (i) how a pseudoentangled ensemble on a small subsystem spreads to the whole system as a function of time, and (ii) how a pseudoentangled ensemble can be generated from an initial product state. We map the above problems onto a family of classical Markov chains on subsets of the computational basis. The mixing times of such Markov chains are related to the time scales at which the states produced from the dynamics become indistinguishable from Haar-random states at the level of each statistical moment. Based on a combination of rigorous bounds and conjectures supported by numerics, we argue that each Markov chain's relaxation time and mixing time have different asymptotic behavior in the limit of large system size. This is a necessary condition for a cutoff phenomenon: an abrupt dynamical transition to equilibrium. We thus conjecture that our random circuits give rise to asymptotically sharp pseudothermalization transitions.
Related papers
- Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Exploring Hilbert-Space Fragmentation on a Superconducting Processor [23.39066473461786]
Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity.
Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization.
Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits.
arXiv Detail & Related papers (2024-03-14T04:39:14Z) - Understanding multiple timescales in quantum dissipative dynamics:
Insights from quantum trajectories [0.0]
We show that open quantum systems with nearly degenerate energy levels exhibit long-lived metastable states in the approach to equilibrium.
This is a result of dramatic separation of timescales due to differences between Liouvillian eigenvalues.
arXiv Detail & Related papers (2024-02-07T02:06:51Z) - Signatures of quantum phases in a dissipative system [13.23575512928342]
Lindbladian formalism has been all-pervasive to interpret non-equilibrium steady states of quantum many-body systems.
We study the fate of free fermionic and superconducting phases in a dissipative one-dimensional Kitaev model.
arXiv Detail & Related papers (2023-12-28T17:53:26Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Emergent pair localization in a many-body quantum spin system [0.0]
Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis.
In the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales.
We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator.
arXiv Detail & Related papers (2022-07-28T16:31:18Z) - Quantum coherence controls the nature of equilibration in coupled
chaotic systems [0.0]
Quantum coherence of the initial product states in the uncoupled eigenbasis can be viewed as a resource for equilibration and approach to thermalization.
Results are given for four distinct perturbation strength regimes, the ultra-weak, weak, intermediate, and strong regimes.
Maximally coherent initial states thermalize for any perturbation strength in spite of the fact that in the ultra-weak perturbative regime the underlying eigenstates of the system have a tensor product structure and are not at all thermal-like.
arXiv Detail & Related papers (2022-04-15T17:33:44Z) - Prethermalization in one-dimensional quantum many-body systems with
confinement [0.0]
Unconventional nonequilibrium phases with restricted correlation spreading and slow entanglement growth have been proposed to emerge in systems with confined excitations.
Here, we show that in confined systems the thermalization dynamics after a quantum quench instead exhibits multiple stages with well separated time scales.
The discussed prethermalization dynamics is directly relevant to generic one-dimensional, many-body systems with confined excitations
arXiv Detail & Related papers (2022-02-25T19:01:02Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Undecidability in quantum thermalization [0.0]
We show that there is no general theorem, algorithm, or systematic procedure determining the presence or absence of thermalization in any given Hamiltonian.
We construct a family of Hamiltonians encoding dynamics of a reversible universal Turing machine, where the fate of a relaxation process changes depending on whether the Turing machine halts.
arXiv Detail & Related papers (2020-12-27T08:34:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.