Quantum computation with cat qubits
- URL: http://arxiv.org/abs/2203.03222v3
- Date: Tue, 3 Jan 2023 14:54:24 GMT
- Title: Quantum computation with cat qubits
- Authors: J\'er\'emie Guillaud, Joachim Cohen, Mazyar Mirrahimi
- Abstract summary: We focus on the case of cat qubits stabilized by a nonlinear multi-photon driven dissipation process.
We argue that such a system can be seen as a self-correcting qubit where bit-flip errors are robustly and exponentially suppressed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: These are the lecture notes from the 2019 Les Houches Summer School on
"Quantum Information Machines". After a brief introduction to quantum error
correction and bosonic codes, we focus on the case of cat qubits stabilized by
a nonlinear multi-photon driven dissipation process. We argue that such a
system can be seen as a self-correcting qubit where bit-flip errors are
robustly and exponentially suppressed. Next, we provide some experimental
directions to engineer such a multi-photon driven dissipation process with
superconducting circuits. Finally, we analyze various logical gates that can be
implemented without re-introducing bit-flip errors. This set of bias-preserving
gates pave the way towards a hardware-efficient and fault-tolerant quantum
processor.
Related papers
- Hardware-Efficient Fault Tolerant Quantum Computing with Bosonic Grid States in Superconducting Circuits [0.0]
This perspective manuscript describes how bosonic codes, particularly grid state encodings, offer a pathway to scalable fault-tolerant quantum computing.
By leveraging the large Hilbert space of bosonic modes, quantum error correction can operate at the single physical unit level.
We argue that it offers the shortest path to achieving fault tolerance in gate-based quantum computing processors with a MHz logical clock rate.
arXiv Detail & Related papers (2024-09-09T17:20:06Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum error correction with dissipatively stabilized squeezed cat
qubits [68.8204255655161]
We propose and analyze the error correction performance of a dissipatively stabilized squeezed cat qubit.
We find that for moderate squeezing the bit-flip error rate gets significantly reduced in comparison with the ordinary cat qubit while leaving the phase flip rate unchanged.
arXiv Detail & Related papers (2022-10-24T16:02:20Z) - Syndrome-Derived Error Rates as a Benchmark of Quantum Hardware [0.0]
Quantum error correcting codes are designed to pinpoint exactly when and where errors occur in quantum circuits.
By analyzing the outputs of even small-scale quantum error correction circuits, a detailed picture can be constructed of error processes across a quantum device.
arXiv Detail & Related papers (2022-07-01T17:10:51Z) - Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits [63.83649593474856]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general standpoint that deep quantum circuits would not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Quantum error correction using squeezed Schr\"odinger cat states [0.0]
We develop a bosonic quantum code relying on squeezed cat states.
We show that the squeezed cat code has a resilience to particle loss errors that significantly outperforms that of the conventional cat code.
arXiv Detail & Related papers (2022-01-07T18:09:09Z) - Introduction to Quantum Error Correction and Fault Tolerance [0.0]
The aim is to provide an introduction to classical and quantum error correction with bits and qubits.
The focus is on practical examples that can be realized today or in the near future with a modular architecture.
arXiv Detail & Related papers (2021-11-17T04:05:48Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Building a fault-tolerant quantum computer using concatenated cat codes [44.03171880260564]
We present a proposed fault-tolerant quantum computer based on cat codes with outer quantum error-correcting codes.
We numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code.
We find that with around 1,000 superconducting circuit components, one could construct a fault-tolerant quantum computer.
arXiv Detail & Related papers (2020-12-07T23:22:40Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.