Lindblad master equations for quantum systems coupled to dissipative
bosonic modes
- URL: http://arxiv.org/abs/2203.03302v1
- Date: Mon, 7 Mar 2022 11:21:48 GMT
- Title: Lindblad master equations for quantum systems coupled to dissipative
bosonic modes
- Authors: Simon B. J\"ager, Tom Schmit, Giovanna Morigi, Murray J. Holland, and
Ralf Betzholz
- Abstract summary: We derive Lindblad master equations for a subsystem whose dynamics is coupled to bosonic modes.
We apply this formalism to the dissipative Dicke model and derive a Lindblad master equation for the atomic spins.
This master equation accurately predicts the Dicke phase transition and gives the correct steady state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a general approach to derive Lindblad master equations for a
subsystem whose dynamics is coupled to dissipative bosonic modes. The
derivation relies on a Schrieffer-Wolff transformation which allows to
eliminate the bosonic degrees of freedom after self-consistently determining
their state as a function of the coupled quantum system. We apply this
formalism to the dissipative Dicke model and derive a Lindblad master equation
for the atomic spins, which includes the coherent and dissipative interactions
mediated by the bosonic mode. This master equation accurately predicts the
Dicke phase transition and gives the correct steady state. In addition, we
compare the dynamics using exact diagonalization and numerical integration of
the master equation with the predictions of semiclassical trajectories. We
finally test the performance of our formalism by studying the relaxation of a
NOON state and show that the dynamics captures quantum metastability beyond the
mean-field approximation.
Related papers
- Quantum simulation of the Fokker-Planck equation via Schrodingerization [33.76659022113328]
This paper studies a quantum simulation technique for solving the Fokker-Planck equation.
We employ the Schrodingerization method-it converts any linear partial and ordinary differential equation with non-Hermitian dynamics into systems of Schrodinger-type equations.
arXiv Detail & Related papers (2024-04-21T08:53:27Z) - Stochastic Schr\"odinger equation approach to real-time dynamics of
Anderson-Holstein impurities: an open quantum system perspective [3.105656247358225]
We develop a framework to simulate dynamics of Anderson-Holstein impurities coupled to a continuous fermionic bath.
We show that such an SSE treatment provides a middle ground between numerically expansive microscopic simulations and master equations.
arXiv Detail & Related papers (2023-09-16T06:03:54Z) - From Lindblad master equations to Langevin dynamics and back [0.0]
A case study of the non-equilibrium dynamics of open quantum systems is presented.
The quantum Langevin equations are derived from an identical set of physical criteria.
The associated Lindblad equations are derived but only one of them is completely positive.
arXiv Detail & Related papers (2023-05-10T16:59:48Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Statistical mechanics of one-dimensional quantum droplets [0.0]
We study the dynamical relaxation process of modulationally unstable one-dimensional quantum droplets.
We find that the instability leads to the spontaneous formation of quantum droplets featuring multiple collisions.
arXiv Detail & Related papers (2021-02-25T15:30:30Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Full-polaron master equation approach to dynamical steady states of a
driven two-level system beyond the weak system-environment coupling [1.7188280334580193]
We apply a full-polaron master equation and a weak-coupling non-Markovian master equation to describe the steady-state properties of a driven two-level system.
Our full-polaron equation approach does not require the special renormalization scheme employed in their weak-coupling theoretical method.
arXiv Detail & Related papers (2020-07-17T17:21:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.