An STDP-Based Supervised Learning Algorithm for Spiking Neural Networks
- URL: http://arxiv.org/abs/2203.03379v1
- Date: Mon, 7 Mar 2022 13:40:09 GMT
- Title: An STDP-Based Supervised Learning Algorithm for Spiking Neural Networks
- Authors: Zhanhao Hu, Tao Wang, Xiaolin Hu
- Abstract summary: Spiking Neural Networks (SNN) provide a more biological plausible model for the brain.
We propose a supervised learning algorithm based on Spike-Timing Dependent Plasticity (STDP) for a hierarchical SNN consisting of Leaky Integrate-and-fire neurons.
- Score: 20.309112286222238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compared with rate-based artificial neural networks, Spiking Neural Networks
(SNN) provide a more biological plausible model for the brain. But how they
perform supervised learning remains elusive. Inspired by recent works of Bengio
et al., we propose a supervised learning algorithm based on Spike-Timing
Dependent Plasticity (STDP) for a hierarchical SNN consisting of Leaky
Integrate-and-fire (LIF) neurons. A time window is designed for the presynaptic
neuron and only the spikes in this window take part in the STDP updating
process. The model is trained on the MNIST dataset. The classification accuracy
approach that of a Multilayer Perceptron (MLP) with similar architecture
trained by the standard back-propagation algorithm.
Related papers
- A survey on learning models of spiking neural membrane systems and spiking neural networks [0.0]
Spiking neural networks (SNN) are a biologically inspired model of neural networks with certain brain-like properties.
In SNN, communication between neurons takes place through the spikes and spike trains.
SNPS can be considered a branch of SNN based more on the principles of formal automata.
arXiv Detail & Related papers (2024-03-27T14:26:41Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Desire Backpropagation: A Lightweight Training Algorithm for Multi-Layer
Spiking Neural Networks based on Spike-Timing-Dependent Plasticity [13.384228628766236]
Spiking neural networks (SNNs) are a viable alternative to conventional artificial neural networks.
We present desire backpropagation, a method to derive the desired spike activity of all neurons, including the hidden ones.
We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively.
arXiv Detail & Related papers (2022-11-10T08:32:13Z) - Heterogeneous Recurrent Spiking Neural Network for Spatio-Temporal
Classification [13.521272923545409]
Spi Neural Networks are often touted as brain-inspired learning models for the third wave of Artificial Intelligence.
This paper presents a heterogeneous spiking neural network (HRSNN) with unsupervised learning for video recognition tasks.
We show that HRSNN can achieve similar performance to state-of-the-temporal backpropagation trained supervised SNN, but with less computation.
arXiv Detail & Related papers (2022-09-22T16:34:01Z) - An Unsupervised STDP-based Spiking Neural Network Inspired By
Biologically Plausible Learning Rules and Connections [10.188771327458651]
Spike-timing-dependent plasticity (STDP) is a general learning rule in the brain, but spiking neural networks (SNNs) trained with STDP alone is inefficient and perform poorly.
We design an adaptive synaptic filter and introduce the adaptive spiking threshold to enrich the representation ability of SNNs.
Our model achieves the current state-of-the-art performance of unsupervised STDP-based SNNs in the MNIST and FashionMNIST datasets.
arXiv Detail & Related papers (2022-07-06T14:53:32Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
We propose a novel model-parallel learning method, called local critic training.
We show that the proposed approach successfully decouples the update process of the layer groups for both convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
We also show that trained networks by the proposed method can be used for structural optimization.
arXiv Detail & Related papers (2021-02-03T09:30:45Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.