Heterogeneous Recurrent Spiking Neural Network for Spatio-Temporal
Classification
- URL: http://arxiv.org/abs/2211.04297v1
- Date: Thu, 22 Sep 2022 16:34:01 GMT
- Title: Heterogeneous Recurrent Spiking Neural Network for Spatio-Temporal
Classification
- Authors: Biswadeep Chakraborty and Saibal Mukhopadhyay
- Abstract summary: Spi Neural Networks are often touted as brain-inspired learning models for the third wave of Artificial Intelligence.
This paper presents a heterogeneous spiking neural network (HRSNN) with unsupervised learning for video recognition tasks.
We show that HRSNN can achieve similar performance to state-of-the-temporal backpropagation trained supervised SNN, but with less computation.
- Score: 13.521272923545409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking Neural Networks are often touted as brain-inspired learning models
for the third wave of Artificial Intelligence. Although recent SNNs trained
with supervised backpropagation show classification accuracy comparable to deep
networks, the performance of unsupervised learning-based SNNs remains much
lower. This paper presents a heterogeneous recurrent spiking neural network
(HRSNN) with unsupervised learning for spatio-temporal classification of video
activity recognition tasks on RGB (KTH, UCF11, UCF101) and event-based datasets
(DVS128 Gesture). The key novelty of the HRSNN is that the recurrent layer in
HRSNN consists of heterogeneous neurons with varying firing/relaxation
dynamics, and they are trained via heterogeneous
spike-time-dependent-plasticity (STDP) with varying learning dynamics for each
synapse. We show that this novel combination of heterogeneity in architecture
and learning method outperforms current homogeneous spiking neural networks. We
further show that HRSNN can achieve similar performance to state-of-the-art
backpropagation trained supervised SNN, but with less computation (fewer
neurons and sparse connection) and less training data.
Related papers
- Investigating Sparsity in Recurrent Neural Networks [0.0]
This thesis focuses on investigating the effects of pruning and Sparse Recurrent Neural Networks on the performance of RNNs.
We first describe the pruning of RNNs, its impact on the performance of RNNs, and the number of training epochs required to regain accuracy after the pruning is performed.
Next, we continue with the creation and training of Sparse Recurrent Neural Networks and identify the relation between the performance and the graph properties of its underlying arbitrary structure.
arXiv Detail & Related papers (2024-07-30T07:24:58Z) - Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks [16.60622265961373]
Spiking Neural Networks (SNNs) have become an essential paradigm in neuroscience and artificial intelligence.
Recent advances in literature have studied the network representations of deep neural networks.
arXiv Detail & Related papers (2024-03-19T05:37:26Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - An STDP-Based Supervised Learning Algorithm for Spiking Neural Networks [20.309112286222238]
Spiking Neural Networks (SNN) provide a more biological plausible model for the brain.
We propose a supervised learning algorithm based on Spike-Timing Dependent Plasticity (STDP) for a hierarchical SNN consisting of Leaky Integrate-and-fire neurons.
arXiv Detail & Related papers (2022-03-07T13:40:09Z) - Combining Spiking Neural Network and Artificial Neural Network for
Enhanced Image Classification [1.8411688477000185]
spiking neural networks (SNNs) that more closely resemble biological brain synapses have attracted attention owing to their low power consumption.
We build versatile hybrid neural networks (HNNs) that improve the concerned performance.
arXiv Detail & Related papers (2021-02-21T12:03:16Z) - Skip-Connected Self-Recurrent Spiking Neural Networks with Joint
Intrinsic Parameter and Synaptic Weight Training [14.992756670960008]
We propose a new type of RSNN called Skip-Connected Self-Recurrent SNNs (ScSr-SNNs)
ScSr-SNNs can boost performance by up to 2.55% compared with other types of RSNNs trained by state-of-the-art BP methods.
arXiv Detail & Related papers (2020-10-23T22:27:13Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
Recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs)
In this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons.
Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs.
arXiv Detail & Related papers (2020-08-21T19:03:23Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.