Designing Heterogeneous GNNs with Desired Permutation Properties for Wireless Resource Allocation
- URL: http://arxiv.org/abs/2203.03906v3
- Date: Tue, 01 Apr 2025 05:52:31 GMT
- Title: Designing Heterogeneous GNNs with Desired Permutation Properties for Wireless Resource Allocation
- Authors: Jianyu Zhao, Chenyang Yang, Tingting Liu,
- Abstract summary: Graph neural networks (GNNs) have been designed for learning a variety of wireless policies.<n>In this paper, we propose a systematic approach for the design to satisfy the desired permutation property.
- Score: 11.66835230109271
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) have been designed for learning a variety of wireless policies, i.e., the mappings from environment parameters to decision variables, thanks to their superior performance, and the potential in enabling scalability and size generalizability. These merits are rooted in leveraging permutation prior, i.e., satisfying the permutation property of the policy to be learned (referred to as desired permutation property). Many wireless policies are with complicated permutation properties. To satisfy these properties, heterogeneous GNNs (HetGNNs) should be used to learn such policies. There are two critical factors that enable a HetGNN to satisfy a desired permutation property: constructing an appropriate heterogeneous graph and judiciously designing the architecture of the HetGNN. However, both the graph and the HetGNN are designed heuristically so far. In this paper, we strive to provide a systematic approach for the design to satisfy the desired permutation property. We first propose a method for constructing a graph for a policy, where the edges and their types are defined for the sake of satisfying complicated permutation properties. Then, we provide and prove three sufficient conditions to design a HetGNN such that it can satisfy the desired permutation property when learning over an appropriate graph. These conditions suggest a method of designing the HetGNN with desired permutation property by sharing the processing, combining, and pooling functions according to the types of vertices and edges of the graph. We take power allocation and hybrid precoding policies as examples for demonstrating how to apply the proposed methods and validating the impact of the permutation prior by simulations.
Related papers
- Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services.
These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge.
We introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics.
arXiv Detail & Related papers (2024-11-03T07:01:13Z) - FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Scalable Graph Compressed Convolutions [68.85227170390864]
We propose a differentiable method that applies permutations to calibrate input graphs for Euclidean convolution.
Based on the graph calibration, we propose the Compressed Convolution Network (CoCN) for hierarchical graph representation learning.
arXiv Detail & Related papers (2024-07-26T03:14:13Z) - Federated Reinforcement Learning for Resource Allocation in V2X Networks [46.6256432514037]
Resource allocation significantly impacts the performance of vehicle-to-everything (V2X) networks.
Most existing algorithms for resource allocation are based on optimization or machine learning.
In this paper, we explore resource allocation in a V2X network under the framework of federated reinforcement learning.
arXiv Detail & Related papers (2023-10-15T15:26:54Z) - Discrete Graph Auto-Encoder [52.50288418639075]
We introduce a new framework named Discrete Graph Auto-Encoder (DGAE)
We first use a permutation-equivariant auto-encoder to convert graphs into sets of discrete latent node representations.
In the second step, we sort the sets of discrete latent representations and learn their distribution with a specifically designed auto-regressive model.
arXiv Detail & Related papers (2023-06-13T12:40:39Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Graph Neural Network Bandits [89.31889875864599]
We consider the bandit optimization problem with the reward function defined over graph-structured data.
Key challenges in this setting are scaling to large domains, and to graphs with many nodes.
We show that graph neural networks (GNNs) can be used to estimate the reward function.
arXiv Detail & Related papers (2022-07-13T18:12:36Z) - Going Deeper into Permutation-Sensitive Graph Neural Networks [6.685139672294716]
We devise an efficient permutation-sensitive aggregation mechanism via permutation groups.
We prove that our approach is strictly more powerful than the 2-dimensional Weisfeiler-Lehman (2-WL) graph isomorphism test.
arXiv Detail & Related papers (2022-05-28T08:22:10Z) - Graph Signal Restoration Using Nested Deep Algorithm Unrolling [85.53158261016331]
Graph signal processing is a ubiquitous task in many applications such as sensor, social transportation brain networks, point cloud processing, and graph networks.
We propose two restoration methods based on convexindependent deep ADMM (ADMM)
parameters in the proposed restoration methods are trainable in an end-to-end manner.
arXiv Detail & Related papers (2021-06-30T08:57:01Z) - Graph Neural Networks with Local Graph Parameters [1.8600631687568656]
Local graph parameters can be added to any Graph Neural Networks (GNNs) architecture.
Our results connect GNNs with deep results in finite model theory and finite variable logics.
arXiv Detail & Related papers (2021-06-12T07:43:51Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Joint User Association and Power Allocation in Heterogeneous Ultra Dense
Network via Semi-Supervised Representation Learning [22.725452912879376]
Heterogeneous Ultra-Dense Network (HUDN) can enable higher connectivity density and ultra-high data rates.
This paper proposes a novel idea for resolving the joint user association and power control problem.
We train a Graph Neural Network (GNN) to approach this representation function by using semi-supervised learning.
arXiv Detail & Related papers (2021-03-29T06:39:51Z) - Deep Reinforcement Learning for Resource Constrained Multiclass
Scheduling in Wireless Networks [0.0]
In our setup, the available limited bandwidth resources are allocated in order to serve randomly arriving service demands.
We propose a distributional Deep Deterministic Policy Gradient (DDPG) algorithm combined with Deep Sets to tackle the problem.
Our proposed algorithm is tested on both synthetic and real data, showing consistent gains against state-of-the-art conventional methods.
arXiv Detail & Related papers (2020-11-27T09:49:38Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
Graph neural networks (GNNs) are emerging machine learning models on graphs.
Permutation-equivariance and proximity-awareness are two important properties highly desirable for GNNs.
We show that existing GNNs, mostly based on the message-passing mechanism, cannot simultaneously preserve the two properties.
In order to preserve node proximities, we augment the existing GNNs with node representations.
arXiv Detail & Related papers (2020-09-05T16:46:56Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Expressive Power of Invariant and Equivariant Graph Neural Networks [10.419350129060598]
We show that Folklore Graph Neural Networks (FGNN) are the most expressive architectures proposed so far for a given tensor order.
FGNNs are able to learn how to solve the problem, leading to much better average performances than existing algorithms.
arXiv Detail & Related papers (2020-06-28T16:35:45Z) - Building powerful and equivariant graph neural networks with structural
message-passing [74.93169425144755]
We propose a powerful and equivariant message-passing framework based on two ideas.
First, we propagate a one-hot encoding of the nodes, in addition to the features, in order to learn a local context matrix around each node.
Second, we propose methods for the parametrization of the message and update functions that ensure permutation equivariance.
arXiv Detail & Related papers (2020-06-26T17:15:16Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
Graph representation learning has achieved a remarkable success in many graph-based applications, such as node classification, prediction, and community detection.
However, for some kind of graph applications, such as graph compression and edge partition, it is very hard to reduce them to some graph representation learning tasks.
In this paper, we propose to attack the graph ordering problem behind such applications by a novel learning approach.
arXiv Detail & Related papers (2020-01-18T09:14:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.