Expressive Power of Invariant and Equivariant Graph Neural Networks
- URL: http://arxiv.org/abs/2006.15646v3
- Date: Sun, 6 Jun 2021 15:37:55 GMT
- Title: Expressive Power of Invariant and Equivariant Graph Neural Networks
- Authors: Wa\"iss Azizian, Marc Lelarge
- Abstract summary: We show that Folklore Graph Neural Networks (FGNN) are the most expressive architectures proposed so far for a given tensor order.
FGNNs are able to learn how to solve the problem, leading to much better average performances than existing algorithms.
- Score: 10.419350129060598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various classes of Graph Neural Networks (GNN) have been proposed and shown
to be successful in a wide range of applications with graph structured data. In
this paper, we propose a theoretical framework able to compare the expressive
power of these GNN architectures. The current universality theorems only apply
to intractable classes of GNNs. Here, we prove the first approximation
guarantees for practical GNNs, paving the way for a better understanding of
their generalization. Our theoretical results are proved for invariant GNNs
computing a graph embedding (permutation of the nodes of the input graph does
not affect the output) and equivariant GNNs computing an embedding of the nodes
(permutation of the input permutes the output). We show that Folklore Graph
Neural Networks (FGNN), which are tensor based GNNs augmented with matrix
multiplication are the most expressive architectures proposed so far for a
given tensor order. We illustrate our results on the Quadratic Assignment
Problem (a NP-Hard combinatorial problem) by showing that FGNNs are able to
learn how to solve the problem, leading to much better average performances
than existing algorithms (based on spectral, SDP or other GNNs architectures).
On a practical side, we also implement masked tensors to handle batches of
graphs of varying sizes.
Related papers
- A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
Graph Neural Networks (GNNs) combine information from adjacent nodes by successive applications of graph convolutions.
We study the generalization gaps of GNNs on both node-level and graph-level tasks.
We show that the generalization gaps decrease with the number of nodes in the training graphs.
arXiv Detail & Related papers (2024-06-07T19:25:02Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - Equivariant Polynomials for Graph Neural Networks [38.15983687193912]
Graph Networks (GNN) are inherently limited in their expressive power.
This paper introduces an alternative power hierarchy based on the ability of GNNs to calculate equivariants of certain degree.
These enhanced GNNs demonstrate state-of-the-art results in experiments across multiple graph learning benchmarks.
arXiv Detail & Related papers (2023-02-22T18:53:38Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - Towards Better Generalization with Flexible Representation of
Multi-Module Graph Neural Networks [0.27195102129094995]
We use a random graph generator to investigate how the graph size and structural properties affect the predictive performance of GNNs.
We present specific evidence that the average node degree is a key feature in determining whether GNNs can generalize to unseen graphs.
We propose a multi- module GNN framework that allows the network to adapt flexibly to new graphs by generalizing a single canonical nonlinear transformation over aggregated inputs.
arXiv Detail & Related papers (2022-09-14T12:13:59Z) - Graph Neural Networks with Local Graph Parameters [1.8600631687568656]
Local graph parameters can be added to any Graph Neural Networks (GNNs) architecture.
Our results connect GNNs with deep results in finite model theory and finite variable logics.
arXiv Detail & Related papers (2021-06-12T07:43:51Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Random Features Strengthen Graph Neural Networks [40.60905158071766]
Graph neural networks (GNNs) are powerful machine learning models for various graph learning tasks.
In this paper, we demonstrate that GNNs become powerful just by adding a random feature to each node.
We show that the addition of random features enables GNNs to solve various problems that normal GNNs, including the graph convolutional networks (GCNs) and graph isomorphism networks (GINs) cannot solve.
arXiv Detail & Related papers (2020-02-08T12:47:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.