論文の概要: GaitStrip: Gait Recognition via Effective Strip-based Feature
Representations and Multi-Level Framework
- arxiv url: http://arxiv.org/abs/2203.03966v1
- Date: Tue, 8 Mar 2022 09:49:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-09 14:56:48.033262
- Title: GaitStrip: Gait Recognition via Effective Strip-based Feature
Representations and Multi-Level Framework
- Title(参考訳): GaitStrip: 効果的なストリップ型特徴表現とマルチレベルフレームワークによる歩行認識
- Authors: Ming Wang, Beibei Lin, Xianda Guo, Lincheng Li, Zheng Zhu, Jiande Sun,
Shunli Zhang and Xin Yu
- Abstract要約: 本稿では,様々なレベルの歩行情報を抽出するために,GaitStripという名前のストリップベースマルチレベル歩行認識ネットワークを提案する。
具体的には、私たちの高レベルブランチは歩行シーケンスのコンテキストを探求し、低レベルブランチは詳細な姿勢変化に焦点を当てています。
我々のGaitStripは、通常の歩行条件と複雑な歩行条件の両方において最先端の性能を達成する。
- 参考スコア(独自算出の注目度): 34.397404430838286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many gait recognition methods first partition the human gait into N-parts and
then combine them to establish part-based feature representations. Their gait
recognition performance is often affected by partitioning strategies, which are
empirically chosen in different datasets. However, we observe that strips as
the basic component of parts are agnostic against different partitioning
strategies. Motivated by this observation, we present a strip-based multi-level
gait recognition network, named GaitStrip, to extract comprehensive gait
information at different levels. To be specific, our high-level branch explores
the context of gait sequences and our low-level one focuses on detailed posture
changes. We introduce a novel StriP-Based feature extractor (SPB) to learn the
strip-based feature representations by directly taking each strip of the human
body as the basic unit. Moreover, we propose a novel multi-branch structure,
called Enhanced Convolution Module (ECM), to extract different representations
of gaits. ECM consists of the Spatial-Temporal feature extractor (ST), the
Frame-Level feature extractor (FL) and SPB, and has two obvious advantages:
First, each branch focuses on a specific representation, which can be used to
improve the robustness of the network. Specifically, ST aims to extract
spatial-temporal features of gait sequences, while FL is used to generate the
feature representation of each frame. Second, the parameters of the ECM can be
reduced in test by introducing a structural re-parameterization technique.
Extensive experimental results demonstrate that our GaitStrip achieves
state-of-the-art performance in both normal walking and complex conditions.
- Abstract(参考訳): 多くの歩行認識法は、まず人間の歩行をN部分に分割し、それらを結合して部分ベースの特徴表現を確立する。
彼らの歩行認識性能は、異なるデータセットで経験的に選択される分割戦略によってしばしば影響を受ける。
しかし, 部品の基本成分としてのストリップは, 異なる分割戦略に対して非依存であることがわかった。
そこで本研究では,GaitStripというストリップベースのマルチレベル歩行認識ネットワークを提案し,様々なレベルの歩行情報を抽出する。
具体的には、私たちの高レベルブランチは歩行シーケンスのコンテキストを探求し、低レベルブランチは詳細な姿勢変化に焦点を当てています。
本稿では、人体の各ストリップを基本単位として、ストリップ型特徴表現を学習するための新しいストリップ型特徴抽出器(spb)を提案する。
さらに,異なる歩行表現を抽出するために,拡張畳み込みモジュール (ECM) と呼ばれる新しいマルチブランチ構造を提案する。
ecmは、spatial-temporal feature extractor (st)、frame-level feature extractor (fl)、spabの2つで構成されており、それぞれのブランチは、ネットワークの堅牢性を改善するために使用できる特定の表現に焦点を当てている。
具体的には、STは歩数列の時空間的特徴を抽出し、FLは各フレームの特徴表現を生成する。
第2に、構造的再パラメータ化手法を導入することにより、ECMのパラメータをテストで削減することができる。
我々のGaitStripは,正常歩行と複雑歩行の両条件で最先端の歩行性能を達成できることを示した。
関連論文リスト
- It Takes Two: Accurate Gait Recognition in the Wild via Cross-granularity Alignment [72.75844404617959]
本稿では,XGait という新しい粒度アライメント歩行認識手法を提案する。
この目的を達成するために、XGaitはまず2つのバックボーンエンコーダの分岐を含み、シルエットシーケンスとパーシングシーケンスを2つの潜在空間にマッピングする。
2つの大規模な歩行データセットの総合的な実験では、ランク1の精度が80.5%、CCPGが88.3%である。
論文 参考訳(メタデータ) (2024-11-16T08:54:27Z) - DiffVein: A Unified Diffusion Network for Finger Vein Segmentation and
Authentication [50.017055360261665]
DiffVeinは、静脈分割と認証タスクを同時に処理する統合拡散モデルベースのフレームワークである。
これら2つのブランチ間の機能相互作用を改善するために,2つの特別なモジュールを導入する。
このようにして、我々のフレームワークは拡散とセグメンテーションの埋め込みの間の動的相互作用を可能にする。
論文 参考訳(メタデータ) (2024-02-03T06:49:42Z) - GaitFormer: Revisiting Intrinsic Periodicity for Gait Recognition [6.517046095186713]
歩行認識は、外見情報に頼るのではなく、ビデオレベルの人間のシルエットを分析することで、異なる歩行パターンを区別することを目的としている。
これまでの研究は主に局所的あるいはグローバルな時間的表現の抽出に重点を置いてきた。
本稿では,周期的特性と歩行パターンの微細な時間依存性を生かした,TPA (Temporal Periodic Alignment) と呼ばれるプラグイン・アンド・プレイ戦略を提案する。
論文 参考訳(メタデータ) (2023-07-25T05:05:07Z) - Hierarchical Spatio-Temporal Representation Learning for Gait
Recognition [6.877671230651998]
歩行認識は、個人を独自の歩行スタイルで識別する生体計測技術である。
粗いものから細かいものまで歩行特徴を抽出する階層的時間的表現学習フレームワークを提案する。
本手法は,モデル精度と複雑性の適切なバランスを維持しつつ,最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2023-07-19T09:30:00Z) - Part-guided Relational Transformers for Fine-grained Visual Recognition [59.20531172172135]
識別的特徴を学習し,特徴変換モジュールとの相関関係を探索するフレームワークを提案する。
提案手法は,3-of-the-levelオブジェクト認識において,部分ブランチの追加に頼らず,最先端の性能に達する。
論文 参考訳(メタデータ) (2022-12-28T03:45:56Z) - GaitMM: Multi-Granularity Motion Sequence Learning for Gait Recognition [6.877671230651998]
歩行認識は、各身体部位の異なる周期的な動きを観察することにより、個人固有の歩行パターンを識別することを目的としている。
既存のほとんどの手法は各部分を等しく扱い、異なるステップ周波数と歩行のサンプリングレートによって引き起こされるデータの冗長性を考慮できない。
本研究では,歩行系列学習のためのマルチグラニュラリティ動作表現(GaitMM)を提案する。
論文 参考訳(メタデータ) (2022-09-18T04:07:33Z) - CFNet: Learning Correlation Functions for One-Stage Panoptic
Segmentation [46.252118473248316]
バックボーンの特徴を高めるために,まず,異なる場所のセマンティックレベルとインスタンスレベルの相関関係を推定することを提案する。
次に,改良された識別特徴をそれぞれ対応するセグメンテーションヘッドに供給する。
PQは45.1ドル%、ADE20kは32.6ドル%である。
論文 参考訳(メタデータ) (2022-01-13T05:31:14Z) - Improving Video Instance Segmentation via Temporal Pyramid Routing [61.10753640148878]
Video Instance(VIS)は、ビデオシーケンス内の各インスタンスを検出し、セグメンテーションし、追跡することを目的とした、新しい、本質的にはマルチタスク問題である。
隣接する2つのフレームからなる特徴ピラミッド対から画素レベルのアグリゲーションを条件付きで調整し,実行するための時間ピラミッドルーティング(TPR)戦略を提案する。
我々のアプローチはプラグイン・アンド・プレイモジュールであり、既存のインスタンス・セグメンテーション・メソッドにも容易に適用できます。
論文 参考訳(メタデータ) (2021-07-28T03:57:12Z) - Spatio-Temporal Representation Factorization for Video-based Person
Re-Identification [55.01276167336187]
本稿では、re-IDのための時空間表現分解モジュール(STRF)を提案する。
STRFはフレキシブルな新しい計算ユニットであり、re-IDのための既存のほとんどの3D畳み込みニューラルネットワークアーキテクチャと併用することができる。
実験により、STRFは様々なベースラインアーキテクチャの性能を向上し、新しい最先端の成果を示す。
論文 参考訳(メタデータ) (2021-07-25T19:29:37Z) - Sequential convolutional network for behavioral pattern extraction in
gait recognition [0.7874708385247353]
個人の歩行パターンを学習するための逐次畳み込みネットワーク(SCN)を提案する。
SCNでは、時系列の中間特徴写像を理解するために行動情報抽出器(BIE)を構築している。
SCNのマルチフレームアグリゲータは、モバイル3D畳み込み層を介して、長さが不確定なシーケンス上の機能統合を実行する。
論文 参考訳(メタデータ) (2021-04-23T08:44:10Z) - Batch Coherence-Driven Network for Part-aware Person Re-Identification [79.33809815035127]
既存のパートアウェアの人物再識別方法は、通常、ボディ部分の検出と部分レベルの特徴抽出という2つのステップを使用する。
トレーニングフェーズとテストフェーズの両方で身体の一部をバイパスし,セマンティックに整合した機能を実現するNetworkBCDNetを提案する。
論文 参考訳(メタデータ) (2020-09-21T09:04:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。