論文の概要: Data augmentation with mixtures of max-entropy transformations for
filling-level classification
- arxiv url: http://arxiv.org/abs/2203.04027v1
- Date: Tue, 8 Mar 2022 11:41:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-09 14:17:51.576820
- Title: Data augmentation with mixtures of max-entropy transformations for
filling-level classification
- Title(参考訳): 充填レベル分類のための最大エントロピー変換の混合によるデータ拡張
- Authors: Apostolos Modas and Andrea Cavallaro and Pascal Frossard
- Abstract要約: 本稿では,コンテンツレベルの分類作業のための基本データ拡張スキームを用いて,テスト時間データにおける分散シフトの問題に対処する。
このような原理的な拡張スキームは,伝達学習を利用した現在のアプローチを置き換えたり,伝達学習と組み合わせて性能を向上させることができることを示す。
- 参考スコア(独自算出の注目度): 88.14088768857242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of distribution shifts in test-time data with a
principled data augmentation scheme for the task of content-level
classification. In such a task, properties such as shape or transparency of
test-time containers (cup or drinking glass) may differ from those represented
in the training data. Dealing with such distribution shifts using standard
augmentation schemes is challenging and transforming the training images to
cover the properties of the test-time instances requires sophisticated image
manipulations. We therefore generate diverse augmentations using a family of
max-entropy transformations that create samples with new shapes, colors and
spectral characteristics. We show that such a principled augmentation scheme,
alone, can replace current approaches that use transfer learning or can be used
in combination with transfer learning to improve its performance.
- Abstract(参考訳): 本稿では,コンテンツレベルの分類作業のための基本データ拡張スキームを用いて,テスト時間データにおける分散シフトの問題に対処する。
このようなタスクでは、テスト時容器(カップやグラス)の形状や透明度などの特性が、トレーニングデータで表されるものと異なる場合がある。
このような分散シフトを標準拡張方式で処理することは困難であり、テスト時間インスタンスの特性をカバーするためにトレーニングイメージを変換するには洗練された画像操作が必要である。
したがって、新しい形状、色、スペクトル特性を持つサンプルを生成するマックスエントロピー変換の族を用いて、多様な拡張を生成する。
このような原則拡張スキームだけで、トランスファー学習を使用する現在のアプローチを置き換えたり、あるいはトランスファー学習と組み合わせてパフォーマンスを向上させることが可能であることを示す。
関連論文リスト
- Random Field Augmentations for Self-Supervised Representation Learning [4.3543354293465155]
本稿では,ガウス確率場に基づく局所変換の新たなファミリーを提案し,自己教師付き表現学習のための画像拡張を生成する。
我々は、ImageNet下流分類のベースラインよりも1.7%のTop-1精度向上と、アウト・オブ・ディストリビューションiNaturalist下流分類の3.6%の改善を実現している。
弱い変換は表現を改善するが、強い変換は画像の構造を劣化させることができる。
論文 参考訳(メタデータ) (2023-11-07T00:35:09Z) - Effective Data Augmentation With Diffusion Models [65.09758931804478]
我々は、事前訓練されたテキスト・画像拡散モデルによりパラメータ化された画像・画像変換によるデータ拡張の多様性の欠如に対処する。
本手法は,市販の拡散モデルを用いて画像のセマンティクスを編集し,いくつかのラベル付き例から新しい視覚概念に一般化する。
本手法は,実世界の雑草認識タスクと数ショット画像分類タスクにおいて評価し,テスト領域における精度の向上を観察する。
論文 参考訳(メタデータ) (2023-02-07T20:42:28Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
本稿では, 地理的に整理された潜伏変数を用いた深部生成モデルを効率的に学習するための新しい手法であるTopographic VAEを紹介する。
このようなモデルでは,MNIST上での桁数クラス,幅,スタイルなどの健全な特徴に応じて,その活性化を組織化することが実際に学べることが示される。
我々は、既存の群同変ニューラルネットワークの能力を拡張して、複素変換に近似した同値性を示す。
論文 参考訳(メタデータ) (2021-09-03T09:25:57Z) - Robust Training Using Natural Transformation [19.455666609149567]
画像分類アルゴリズムのロバスト性を改善するための逆学習手法であるNaTraを提案する。
クラス識別とは無関係な入力画像の属性をターゲティングし、それらの属性を操作して実世界の自然変換を模倣します。
本手法の有効性を,よく訓練されたGANから導かれる非絡み合った潜在表現を用いて実証する。
論文 参考訳(メタデータ) (2021-05-10T01:56:03Z) - Improving filling level classification with adversarial training [90.01594595780928]
単一画像からカップや飲料グラスのコンテントのレベルを分類する問題について検討する。
汎用ソースデータセットで逆トレーニングを使用し、タスク固有のデータセットでトレーニングを洗練します。
ソース領域における逆学習による伝達学習は,テストセットの分類精度を常に向上させることを示す。
論文 参考訳(メタデータ) (2021-02-08T08:32:56Z) - FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning [64.32306537419498]
本稿では,複雑な変換を多様に生成する特徴量に基づく改良・拡張手法を提案する。
これらの変換は、クラスタリングを通じて抽出したクラス内およびクラス間の両方の情報も利用します。
提案手法は,大規模データセットにスケールアップしながら,より小さなデータセットに対して,現在の最先端技術に匹敵するものであることを実証する。
論文 参考訳(メタデータ) (2020-07-16T17:55:31Z) - Deep Transformation-Invariant Clustering [24.23117820167443]
抽象的な特徴に頼らず、画像変換の予測を学ぶアプローチを提案する。
この学習プロセスは、K平均とガウス混合モデルの勾配に基づく訓練に自然に適合する。
我々の新しいアプローチは、標準的な画像クラスタリングベンチマークにおいて、競争力があり、非常に有望な結果をもたらすことを実証する。
論文 参考訳(メタデータ) (2020-06-19T13:43:08Z) - Probabilistic Spatial Transformer Networks [0.6999740786886537]
本稿では、決定論的ではなく、変換を推定する確率的拡張を提案する。
これら2つの特性が,分類性能,ロバスト性,モデル校正性の向上につながることを示す。
さらに、時系列データにおけるモデル性能を改善することにより、非視覚領域へのアプローチが一般化されることを実証する。
論文 参考訳(メタデータ) (2020-04-07T18:22:02Z) - On Compositions of Transformations in Contrastive Self-Supervised
Learning [66.15514035861048]
本稿では,コントラスト学習をより広範な変換集合に一般化する。
特定の変換に不変であり、他の変換に特有であることは、効果的なビデオ表現の学習に不可欠である。
論文 参考訳(メタデータ) (2020-03-09T17:56:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。