Exploration of Various Deep Learning Models for Increased Accuracy in
Automatic Polyp Detection
- URL: http://arxiv.org/abs/2203.04093v1
- Date: Fri, 4 Mar 2022 04:03:41 GMT
- Title: Exploration of Various Deep Learning Models for Increased Accuracy in
Automatic Polyp Detection
- Authors: Ariel E. Isidro, Arnel C. Fajardo, Alexander A. Hernandez
- Abstract summary: This paper explores deep learning models and algorithms that results in highest accuracy in detecting polyp on colonoscopy images.
Previous studies implemented deep learning using convolution neural network (CNN)
- Score: 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper is created to explore deep learning models and algorithms that
results in highest accuracy in detecting polyp on colonoscopy images. Previous
studies implemented deep learning using convolution neural network (CNN)
algorithm in detecting polyp and non-polyp. Other studies used dropout, and
data augmentation algorithm but mostly not checking the overfitting, thus,
include more than four-layer modelss. Rulei Yu et.al from the Institute of
Software, Chinese Academy of Sciences said that transfer learning is better
talking about performance or improving the previous used algorithm. Most
especially in applying the transfer learning in feature extraction. Series of
experiments were conducted with only a minimum of 4 CNN layers applying
previous used models and identified the model that produce the highest
percentage accuracy of 98% among the other models that apply transfer learning.
Further studies could use different optimizer to a different CNN modelsto
increase accuracy.
Related papers
- Variational autoencoder-based neural network model compression [4.992476489874941]
Variational Autoencoders (VAEs), as a form of deep generative model, have been widely used in recent years.
This paper aims to explore neural network model compression method based on VAE.
arXiv Detail & Related papers (2024-08-25T09:06:22Z) - Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
In this paper, an ensemble learning technique is proposed for early detection and management of diabetic retinopathy.
The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99%)$ in comparison to the previous models.
arXiv Detail & Related papers (2024-07-25T04:09:17Z) - Breast Cancer Image Classification Method Based on Deep Transfer Learning [40.392772795903795]
A breast cancer image classification model algorithm combining deep learning and transfer learning is proposed.
Experimental results demonstrate that the algorithm achieves an efficiency of over 84.0% in the test set, with a significantly improved classification accuracy compared to previous models.
arXiv Detail & Related papers (2024-04-14T12:09:47Z) - Optimizing Dense Feed-Forward Neural Networks [0.0]
We propose a novel feed-forward neural network constructing method based on pruning and transfer learning.
Our approach can compress the number of parameters by more than 70%.
We also evaluate the transfer learning level comparing the refined model and the original one training from scratch a neural network.
arXiv Detail & Related papers (2023-12-16T23:23:16Z) - Normality Learning-based Graph Anomaly Detection via Multi-Scale
Contrastive Learning [61.57383634677747]
Graph anomaly detection (GAD) has attracted increasing attention in machine learning and data mining.
Here, we propose a normality learning-based GAD framework via multi-scale contrastive learning networks (NLGAD for abbreviation)
Notably, the proposed algorithm improves the detection performance (up to 5.89% AUC gain) compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-09-12T08:06:04Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
Class incremental learning (CIL) algorithms aim to continually learn new object classes from incrementally arriving data.
We experimentally analyze neural network models trained by CIL algorithms using various evaluation protocols in representation learning.
arXiv Detail & Related papers (2022-06-16T11:44:11Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
This paper proposes a CNN algorithm for the Alamosa Canyon Bridge as a real structure.
Three different CNN models were considered to predict one and two malfunctioned sensors.
The accuracy of the model was increased by adding a convolutional layer.
arXiv Detail & Related papers (2022-04-11T23:24:03Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
Fine-tuning the deep convolution neural network(CNN) using a pre-trained model helps transfer knowledge learned from larger datasets to the target task.
We propose RIFLE - a strategy that deepens backpropagation in transfer learning settings.
RIFLE brings meaningful updates to the weights of deep CNN layers and improves low-level feature learning.
arXiv Detail & Related papers (2020-07-07T11:27:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.