Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation
- URL: http://arxiv.org/abs/2407.17755v1
- Date: Thu, 25 Jul 2024 04:09:17 GMT
- Title: Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation
- Authors: Saideep Kilaru, Kothamasu Jayachandra, Tanishka Yagneshwar, Suchi Kumari,
- Abstract summary: In this paper, an ensemble learning technique is proposed for early detection and management of diabetic retinopathy.
The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99%)$ in comparison to the previous models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the focus is on improving the diagnosis of diabetic retinopathy (DR) using machine learning and deep learning technologies. Researchers have explored various approaches, including the use of high-definition medical imaging, AI-driven algorithms such as convolutional neural networks (CNNs) and generative adversarial networks (GANs). Among all the available tools, CNNs have emerged as a preferred tool due to their superior classification accuracy and efficiency. Although the accuracy of CNNs is comparatively better but it can be improved by introducing some hybrid models by combining various machine learning and deep learning models. Therefore, in this paper, an ensemble learning technique is proposed for early detection and management of DR with higher accuracy. The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99\%)$ in comparison to the previous models. Hence, the model can be helpful for early detection and treatment of the DR, thereby enhancing the overall quality of care for affected individuals.
Related papers
- A study on deep feature extraction to detect and classify Acute Lymphoblastic Leukemia (ALL) [0.0]
Acute lymphoblastic leukaemia (ALL) is a blood malignancy that mainly affects adults and children.
This study looks into the use of deep learning, specifically Convolutional Neural Networks (CNNs) for the detection and classification of ALL.
With an 87% accuracy rate, the ResNet101 model produced the best results, closely followed by DenseNet121 and VGG19.
arXiv Detail & Related papers (2024-09-10T17:53:29Z) - Explainable Contrastive and Cost-Sensitive Learning for Cervical Cancer
Classification [0.0]
We first fine-tune five pre-trained CNNs and minimize the overall cost of misclassification.
supervised contrastive learning is included to make the models more adept at capturing important features and patterns.
The experimental results demonstrate the effectiveness of the developed system, achieving an accuracy of 97.29%.
arXiv Detail & Related papers (2024-02-24T21:03:30Z) - Detection and Classification of Diabetic Retinopathy using Deep Learning
Algorithms for Segmentation to Facilitate Referral Recommendation for Test
and Treatment Prediction [0.0]
This research paper addresses the critical challenge of diabetic retinopathy (DR), a severe complication of diabetes leading to potential blindness.
The proposed methodology leverages transfer learning with convolutional neural networks (CNNs) for automatic DR detection using a single fundus photograph.
High evaluation scores in Jaccard, F1, recall, precision, and accuracy underscore the model's potential for enhancing diagnostic capabilities in retinal pathology assessment.
arXiv Detail & Related papers (2024-01-05T11:19:24Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Exploration of Various Deep Learning Models for Increased Accuracy in
Automatic Polyp Detection [62.997667081978825]
This paper explores deep learning models and algorithms that results in highest accuracy in detecting polyp on colonoscopy images.
Previous studies implemented deep learning using convolution neural network (CNN)
arXiv Detail & Related papers (2022-03-04T04:03:41Z) - Improving the Level of Autism Discrimination through GraphRNN Link
Prediction [8.103074928419527]
This paper is based on the latter technique, which learns the edge distribution of real brain network through GraphRNN.
The experimental results show that the combination of original and synthetic data greatly improves the discrimination of the neural network.
arXiv Detail & Related papers (2022-02-19T06:50:32Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Comparison of Convolutional neural network training parameters for
detecting Alzheimers disease and effect on visualization [0.0]
Convolutional neural networks (CNN) have become a powerful tool for detecting patterns in image data.
Despite the high accuracy obtained from CNN models for MRI data so far, almost no papers provided information on the features or image regions driving this accuracy.
arXiv Detail & Related papers (2020-08-18T15:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.