論文の概要: Graph-based Reinforcement Learning meets Mixed Integer Programs: An
application to 3D robot assembly discovery
- arxiv url: http://arxiv.org/abs/2203.04120v1
- Date: Tue, 8 Mar 2022 14:44:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-09 14:22:04.977941
- Title: Graph-based Reinforcement Learning meets Mixed Integer Programs: An
application to 3D robot assembly discovery
- Title(参考訳): 混合整数プログラムを用いたグラフベース強化学習:3次元ロボット集合発見への応用
- Authors: Niklas Funk, Svenja Menzenbach, Georgia Chalvatzaki, Jan Peters
- Abstract要約: 我々は、テトリスのような構造ブロックとロボットマニピュレータを用いて、スクラッチから完全に定義済みの任意のターゲット構造を構築するという課題に対処する。
我々の新しい階層的アプローチは、タスク全体を相互に利益をもたらす3つの実行可能なレベルに効率的に分解することを目的としています。
- 参考スコア(独自算出の注目度): 34.25379651790627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robot assembly discovery is a challenging problem that lives at the
intersection of resource allocation and motion planning. The goal is to combine
a predefined set of objects to form something new while considering task
execution with the robot-in-the-loop. In this work, we tackle the problem of
building arbitrary, predefined target structures entirely from scratch using a
set of Tetris-like building blocks and a robotic manipulator. Our novel
hierarchical approach aims at efficiently decomposing the overall task into
three feasible levels that benefit mutually from each other. On the high level,
we run a classical mixed-integer program for global optimization of block-type
selection and the blocks' final poses to recreate the desired shape. Its output
is then exploited to efficiently guide the exploration of an underlying
reinforcement learning (RL) policy. This RL policy draws its generalization
properties from a flexible graph-based representation that is learned through
Q-learning and can be refined with search. Moreover, it accounts for the
necessary conditions of structural stability and robotic feasibility that
cannot be effectively reflected in the previous layer. Lastly, a grasp and
motion planner transforms the desired assembly commands into robot joint
movements. We demonstrate the performance of the proposed method on a set of
competitive simulated robot assembly discovery environments and report
performance and robustness gains compared to an unstructured end-to-end
approach. Videos are available at https://sites.google.com/view/rl-meets-milp .
- Abstract(参考訳): ロボットの組み立て発見は、リソース割り当てと動き計画の交点にある難しい問題である。
目的は、事前に定義されたオブジェクトのセットを組み合わせて、タスクの実行とループ内のロボットを考慮しながら、何か新しいものを作ることです。
本研究では,テトリスのようなビルディングブロックとロボットマニピュレータのセットを用いて,任意の目標構造をスクラッチから構築する問題に取り組む。
我々の新しい階層的アプローチは、タスク全体を相互に利益をもたらす3つの実行可能なレベルに効率的に分解することを目的としています。
高レベルでは、ブロック型選択のグローバル最適化のための古典的な混合整数プログラムとブロックの最終ポーズを実行し、所望の形状を再現する。
その出力を利用して、基礎となる強化学習(RL)政策の探索を効率的に導く。
このRLポリシは、Qラーニングを通じて学習され、検索によって洗練されるフレキシブルグラフベースの表現から一般化特性を引き出す。
さらに、前層では効果的に反映できない構造安定性とロボット実現性に必要な条件も考慮している。
最後に、把持及び移動プランナーは、所望の組立コマンドをロボット関節運動に変換する。
提案手法は, ロボット集合探索環境の競争シミュレーションにおいて, 非構造的アプローチと比較して, 性能とロバスト性の向上を報告し, 性能を実証する。
ビデオはhttps://sites.google.com/view/rl-meets-milpで閲覧できる。
関連論文リスト
- AssemblyComplete: 3D Combinatorial Construction with Deep Reinforcement Learning [4.3507834596906125]
ロボット工学における重要なゴールは、ロボットに現実世界の協調作業、特に自動組み立てに適応するように教えることである。
本稿では, ユニットプリミティブ(レゴブロック)を用いて実演した3次元組立工法を紹介する。
本研究では,ロボットに不完全な組立の目的を理解し,組立を完了するための建設方針を学ぶための2部構成の深層強化学習(DRL)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-20T18:51:17Z) - Generalize by Touching: Tactile Ensemble Skill Transfer for Robotic Furniture Assembly [24.161856591498825]
TEST(Tactile Ensemble Skill Transfer)は、制御ループに触覚フィードバックを組み込んだオフライン強化学習(RL)アプローチのパイオニアである。
TESTの中核となる設計は、高度計画のためのスキル移行モデルと、適応的なスキル内目標達成ポリシーのセットを学ぶことである。
その結果, TESTは90%以上の成功率を達成でき, 一般化政策の4倍以上の効率であることがわかった。
論文 参考訳(メタデータ) (2024-04-26T20:27:10Z) - Cognitive Planning for Object Goal Navigation using Generative AI Models [0.979851640406258]
本稿では,効率的な探索戦略を生成するオブジェクトゴールナビゲーション問題を解決するための新しいフレームワークを提案する。
我々のアプローチは,Large Language Models (LLMs) とLarge Vision-Language Models (LVLMs) を活用することで,ロボットが慣れない環境をナビゲートすることを可能にする。
論文 参考訳(メタデータ) (2024-03-30T10:54:59Z) - RPMArt: Towards Robust Perception and Manipulation for Articulated Objects [56.73978941406907]
本稿では,Articulated Objects (RPMArt) のロバスト知覚と操作のためのフレームワークを提案する。
RPMArtは、調音パラメータを推定し、雑音の多い点雲から調音部分を操作することを学習する。
我々は,シミュレート・トゥ・リアル・トランスファーの能力を高めるための調音認識型分類手法を提案する。
論文 参考訳(メタデータ) (2024-03-24T05:55:39Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - Multi-level Reasoning for Robotic Assembly: From Sequence Inference to
Contact Selection [74.40109927350856]
本稿では,PAST(Part Assembly Sequence Transformer)を用いて,対象とするブループリントからアセンブリシーケンスを推論する。
次に、モーションプランナーと最適化を使用して、部品の動きと接触を生成する。
実験結果から,本手法は従来手法よりも一般化されていることがわかった。
論文 参考訳(メタデータ) (2023-12-17T00:47:13Z) - Efficient and Feasible Robotic Assembly Sequence Planning via Graph
Representation Learning [22.447462847331312]
本稿では,製品集合体に対するアセンブリグラフと呼ばれるグラフ表現を含む総合的なグラフィカルアプローチを提案する。
GRACEでは、グラフ入力から意味のある情報を抽出し、ステップバイステップでアセンブリシーケンスを予測する。
実験では,アルミニウムプロファイルの積変種にまたがって,本手法が実現可能なアセンブリシーケンスを予測可能であることを示す。
論文 参考訳(メタデータ) (2023-03-17T17:23:14Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z) - A Long Horizon Planning Framework for Manipulating Rigid Pointcloud
Objects [25.428781562909606]
本稿では,剛体物体の操作に伴う長期計画問題の解決のための枠組みを提案する。
提案手法はオブジェクトサブゴールの空間における計画であり,ロボットとオブジェクトの相互作用のダイナミクスに関する推論からプランナーを解放する。
論文 参考訳(メタデータ) (2020-11-16T18:59:33Z) - CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and
Transfer Learning [138.40338621974954]
CausalWorldは、ロボット操作環境における因果構造と伝達学習のベンチマークである。
タスクは、ブロックのセットから3D形状を構築することで構成される。
論文 参考訳(メタデータ) (2020-10-08T23:01:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。