論文の概要: Dynamic Dual-Output Diffusion Models
- arxiv url: http://arxiv.org/abs/2203.04304v1
- Date: Tue, 8 Mar 2022 11:20:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-11 08:59:17.867744
- Title: Dynamic Dual-Output Diffusion Models
- Title(参考訳): 動的二重出力拡散モデル
- Authors: Yaniv Benny, Lior Wolf
- Abstract要約: 反復分解に基づく生成は、他の生成モデルのクラスに匹敵する品質を示すことが示されている。
この方法の大きな欠点は、競合する結果を生み出すために数百のイテレーションが必要であることである。
近年の研究では、より少ないイテレーションでより高速に生成できるソリューションが提案されているが、画像の品質は徐々に低下している。
- 参考スコア(独自算出の注目度): 100.32273175423146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Iterative denoising-based generation, also known as denoising diffusion
models, has recently been shown to be comparable in quality to other classes of
generative models, and even surpass them. Including, in particular, Generative
Adversarial Networks, which are currently the state of the art in many
sub-tasks of image generation. However, a major drawback of this method is that
it requires hundreds of iterations to produce a competitive result. Recent
works have proposed solutions that allow for faster generation with fewer
iterations, but the image quality gradually deteriorates with increasingly
fewer iterations being applied during generation. In this paper, we reveal some
of the causes that affect the generation quality of diffusion models,
especially when sampling with few iterations, and come up with a simple, yet
effective, solution to mitigate them. We consider two opposite equations for
the iterative denoising, the first predicts the applied noise, and the second
predicts the image directly. Our solution takes the two options and learns to
dynamically alternate between them through the denoising process. Our proposed
solution is general and can be applied to any existing diffusion model. As we
show, when applied to various SOTA architectures, our solution immediately
improves their generation quality, with negligible added complexity and
parameters. We experiment on multiple datasets and configurations and run an
extensive ablation study to support these findings.
- Abstract(参考訳): 反復分解に基づく生成は、拡散モデル(denoising diffusion model)としても知られ、最近、他の生成モデルのクラスに匹敵する品質を示し、それらを超えている。
特に、画像生成の多くのサブタスクで現在最先端にある生成的敵ネットワークを含む。
しかし、この方法の大きな欠点は、競合する結果を生み出すために数百のイテレーションが必要であることである。
近年の研究では、より少ないイテレーションでより高速に生成できるソリューションが提案されているが、画像の品質は徐々に低下し、生成時に繰り返しが徐々に減少する。
本稿では,拡散モデルの生成品質に影響を及ぼす原因のいくつかを明らかにする。
本稿では,2つの逆微分方程式について考察し,第1は適用雑音を,第2は直接画像を予測する。
私たちのソリューションは2つの選択肢を取り、デノナイジングプロセスを通じて動的に相互に交互に学習します。
提案する解は一般論であり,任意の拡散モデルに適用可能である。
示すように、様々なSOTAアーキテクチャに適用すると、我々のソリューションはすぐに、複雑さとパラメータを無視して、生成品質を向上します。
我々は、複数のデータセットと構成を実験し、これらの発見をサポートするために広範囲なアブレーション研究を行う。
関連論文リスト
- Blue noise for diffusion models [50.99852321110366]
本稿では,画像内および画像間の相関雑音を考慮した拡散モデルを提案する。
我々のフレームワークは、勾配流を改善するために、1つのミニバッチ内に画像間の相関を導入することができる。
本手法を用いて,各種データセットの質的,定量的な評価を行う。
論文 参考訳(メタデータ) (2024-02-07T14:59:25Z) - AdaDiff: Adaptive Step Selection for Fast Diffusion [88.8198344514677]
我々は、インスタンス固有のステップ利用ポリシーを学ぶために設計されたフレームワークであるAdaDiffを紹介する。
AdaDiffはポリシー勾配法を用いて最適化され、慎重に設計された報酬関数を最大化する。
提案手法は,固定された50ステップを用いて,ベースラインと比較して視覚的品質の点で同様の結果が得られる。
論文 参考訳(メタデータ) (2023-11-24T11:20:38Z) - Denoising Diffusion Bridge Models [54.87947768074036]
拡散モデルは、プロセスを使用してデータにノイズをマッピングする強力な生成モデルである。
画像編集のような多くのアプリケーションでは、モデル入力はランダムノイズではない分布から来る。
本研究では, DDBM(Denoising Diffusion Bridge Models)を提案する。
論文 参考訳(メタデータ) (2023-09-29T03:24:24Z) - Nested Diffusion Processes for Anytime Image Generation [38.84966342097197]
そこで本研究では,任意の時間に任意の時間に停止した場合に,有効画像を生成することができるリアルタイム拡散法を提案する。
ImageNetとStable Diffusionを用いたテキスト・ツー・イメージ生成実験において,本手法の中間生成品質が元の拡散モデルよりも大幅に高いことを示す。
論文 参考訳(メタデータ) (2023-05-30T14:28:43Z) - Real-World Denoising via Diffusion Model [14.722529440511446]
実世界のイメージデノイングは、自然の環境で撮影されたノイズの多い画像からクリーンなイメージを復元することを目的としている。
拡散モデルは画像生成の分野で非常に有望な結果を得た。
本稿では,実世界の画像のデノナイズに使用可能な,新しい一般デノナイズ拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-05-08T04:48:03Z) - VideoFusion: Decomposed Diffusion Models for High-Quality Video
Generation [88.49030739715701]
本研究は, フレームごとのノイズを, 全フレーム間で共有されるベースノイズ, 時間軸に沿って変化する残雑音に分解することで, 拡散過程を分解する。
様々なデータセットの実験により,ビデオフュージョンと呼ばれる我々の手法が,高品質なビデオ生成において,GANベースと拡散ベースの両方の選択肢を上回ることが確認された。
論文 参考訳(メタデータ) (2023-03-15T02:16:39Z) - Deep Equilibrium Approaches to Diffusion Models [1.4275201654498746]
拡散に基づく生成モデルは高品質な画像を生成するのに極めて効果的である。
これらのモデルは通常、高忠実度画像を生成するために長いサンプリングチェーンを必要とする。
我々は、異なる観点からの拡散モデル、すなわち(深い)平衡(DEQ)固定点モデルについて考察する。
論文 参考訳(メタデータ) (2022-10-23T22:02:19Z) - Image Generation with Multimodal Priors using Denoising Diffusion
Probabilistic Models [54.1843419649895]
このタスクを達成するために生成モデルを使用する際の大きな課題は、すべてのモダリティと対応する出力を含むペアデータの欠如である。
本稿では,拡散確率的合成モデルに基づく多モデル先行画像生成手法を提案する。
論文 参考訳(メタデータ) (2022-06-10T12:23:05Z) - Tackling the Generative Learning Trilemma with Denoising Diffusion GANs [20.969702008187838]
深層生成モデルは、しばしば高いサンプル品質、モードカバレッジ、高速サンプリングに同時に対処するのに苦労する。
既存のモデルでは、そのいくつかを他のモデルと交換することが多いので、私たちはこの課題を生成学習のトリレンマと呼んでいる。
マルチモーダル条件付きGANを用いて各デノナイジングステップをモデル化するデノナイジング拡散生成対向ネットワーク(デノナイジング拡散GAN)を導入する。
論文 参考訳(メタデータ) (2021-12-15T00:09:38Z) - Knowledge Distillation in Iterative Generative Models for Improved
Sampling Speed [0.0]
ノイズ条件スコアネットワークなどの反復生成モデルは、初期雑音ベクトルを徐々にデノベートすることで高品質なサンプルを生成する。
知識蒸留と画像生成の新たな関連性を確立し,多段階の認知過程を単一のステップに蒸留する手法を提案する。
我々のDenoising Studentsは、CIFAR-10とCelebAデータセットのGANに匹敵する高品質なサンプルを生成する。
論文 参考訳(メタデータ) (2021-01-07T06:12:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。