論文の概要: Structure and Distribution Metric for Quantifying the Quality of
Uncertainty: Assessing Gaussian Processes, Deep Neural Nets, and Deep Neural
Operators for Regression
- arxiv url: http://arxiv.org/abs/2203.04515v1
- Date: Wed, 9 Mar 2022 04:16:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 14:55:57.813047
- Title: Structure and Distribution Metric for Quantifying the Quality of
Uncertainty: Assessing Gaussian Processes, Deep Neural Nets, and Deep Neural
Operators for Regression
- Title(参考訳): 不確かさの定量化のための構造と分布指標--ガウス過程、ディープニューラルネット、および回帰のためのディープニューラル演算子の評価
- Authors: Ethan Pickering and Themistoklis P. Sapsis
- Abstract要約: 回帰タスクの任意の次元に実装できる2つの比較指標を提案する。
構造計量は、真の誤差と不確かさの形状と位置の類似性を評価する一方、分布計量は、支持された2つの大きさを定量化する。
これらのメトリクスを高次元および非線形テストケースにおけるガウス過程(GP)、アンサンブルディープニューラルネット(DNN)、およびアンサンブルディープニューラルオペレータ(DNO)に適用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose two bounded comparison metrics that may be implemented to
arbitrary dimensions in regression tasks. One quantifies the structure of
uncertainty and the other quantifies the distribution of uncertainty. The
structure metric assesses the similarity in shape and location of uncertainty
with the true error, while the distribution metric quantifies the supported
magnitudes between the two. We apply these metrics to Gaussian Processes (GPs),
Ensemble Deep Neural Nets (DNNs), and Ensemble Deep Neural Operators (DNOs) on
high-dimensional and nonlinear test cases. We find that comparing a model's
uncertainty estimates with the model's squared error provides a compelling
ground truth assessment. We also observe that both DNNs and DNOs, especially
when compared to GPs, provide encouraging metric values in high dimensions with
either sparse or plentiful data.
- Abstract(参考訳): 回帰タスクの任意の次元に実装可能な2つの有界比較指標を提案する。
不確実性の構造を定量化し、一方は不確実性の分布を定量化する。
構造計量は、真の誤差で不確かさの形状と位置の類似性を評価し、分布計量は2つの間の支持された大きさを定量化する。
これらのメトリクスを高次元および非線形テストケースにおけるガウス過程(GP)、アンサンブルディープニューラルネット(DNN)、およびアンサンブルディープニューラルオペレータ(DNO)に適用する。
モデルの不確実性推定とモデルの2乗誤差を比較することは、説得力のある基礎的真理評価をもたらす。
また, DNN と DNO はともに,特に GP と比較した場合, 疎度あるいは多量なデータを用いて高次元の計量値を提供する。
関連論文リスト
- Bias-Reduced Neural Networks for Parameter Estimation in Quantitative MRI [0.13654846342364307]
ニューラルネットワーク(NN)に基づく定量的MRIパラメータ推定器を開発した。
論文 参考訳(メタデータ) (2023-11-13T20:41:48Z) - Deep Neural Networks for Nonparametric Interaction Models with Diverging
Dimension [6.939768185086753]
成長次元シナリオ (d$ grows with $n$ but at a slow rate) と高次元 (dgtrsim n$) の両方において、$kth$オーダーの非パラメトリック相互作用モデルを分析する。
特定の標準仮定の下では、デバイアスドディープニューラルネットワークは、$(n, d)$の両面において、極小値の最適値を達成している。
論文 参考訳(メタデータ) (2023-02-12T04:19:39Z) - Learning Discretized Neural Networks under Ricci Flow [51.36292559262042]
低精度重みとアクティベーションからなる離散ニューラルネットワーク(DNN)について検討する。
DNNは、訓練中に微分不可能な離散関数のために無限あるいはゼロの勾配に悩まされる。
論文 参考訳(メタデータ) (2023-02-07T10:51:53Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - A General Framework for quantifying Aleatoric and Epistemic uncertainty
in Graph Neural Networks [0.29494468099506893]
Graph Neural Networks(GNN)は、グラフ理論と機械学習をエレガントに統合する強力なフレームワークを提供する。
本稿では,モデル誤差と測定の不確かさからGNNの予測の不確かさを定量化する問題を考察する。
ベイジアンフレームワークにおける両源の不確実性を扱うための統一的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-20T05:25:40Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Divergence Frontiers for Generative Models: Sample Complexity,
Quantization Level, and Frontier Integral [58.434753643798224]
多様性フロンティアは生成モデルの評価フレームワークとして提案されている。
分岐フロンティアのプラグイン推定器のサンプル複雑性の非漸近的境界を確立する。
また,スムーズな分布推定器の統計的性能を調べることにより,分散フロンティアの枠組みも強化する。
論文 参考訳(メタデータ) (2021-06-15T06:26:25Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - Probabilistic Neighbourhood Component Analysis: Sample Efficient
Uncertainty Estimation in Deep Learning [25.8227937350516]
トレーニングデータの量が少ない場合,最先端のBNNとDeep Ensembleモデルの不確実性推定能力は著しく低下することを示す。
サンプル効率の高い非パラメトリックkNN手法の確率的一般化を提案する。
我々のアプローチは、深いkNNがその予測において根底にある不確かさを正確に定量化することを可能にする。
論文 参考訳(メタデータ) (2020-07-18T21:36:31Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。