3D Dense Face Alignment with Fused Features by Aggregating CNNs and GCNs
- URL: http://arxiv.org/abs/2203.04643v1
- Date: Wed, 9 Mar 2022 11:07:10 GMT
- Title: 3D Dense Face Alignment with Fused Features by Aggregating CNNs and GCNs
- Authors: Yanda Meng, Xu Chen, Dongxu Gao, Yitian Zhao, Xiaoyun Yang, Yihong
Qiao, Xiaowei Huang and Yalin Zheng
- Abstract summary: This is achieved by seamlessly combining standard convolutional neural networks (CNNs) with Graph Convolution Networks (GCNs)
By iteratively fusing the features across different layers and stages of the CNNs and GCNs, our approach can provide a dense face alignment and 3D face reconstruction simultaneously.
Experiments on several challenging datasets demonstrate that our method outperforms state-of-the-art approaches on both 2D and 3D face alignment tasks.
- Score: 28.7443367565456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel multi-level aggregation network to regress
the coordinates of the vertices of a 3D face from a single 2D image in an
end-to-end manner. This is achieved by seamlessly combining standard
convolutional neural networks (CNNs) with Graph Convolution Networks (GCNs). By
iteratively and hierarchically fusing the features across different layers and
stages of the CNNs and GCNs, our approach can provide a dense face alignment
and 3D face reconstruction simultaneously for the benefit of direct feature
learning of 3D face mesh. Experiments on several challenging datasets
demonstrate that our method outperforms state-of-the-art approaches on both 2D
and 3D face alignment tasks.
Related papers
- DreamMesh4D: Video-to-4D Generation with Sparse-Controlled Gaussian-Mesh Hybrid Representation [10.250715657201363]
We introduce DreamMesh4D, a novel framework combining mesh representation with geometric skinning technique to generate high-quality 4D object from a monocular video.
Our method is compatible with modern graphic pipelines, showcasing its potential in the 3D gaming and film industry.
arXiv Detail & Related papers (2024-10-09T10:41:08Z) - Robust 3D Face Alignment with Multi-Path Neural Architecture Search [23.432737053236096]
3D face alignment is a very challenging and fundamental problem in computer vision.
Existing deep learning-based methods manually design different networks to regress either parameters of a 3D face model or 3D positions of face vertices.
We employ Neural Architecture Search (NAS) to automatically discover the optimal architecture for 3D face alignment.
arXiv Detail & Related papers (2024-06-12T05:02:16Z) - Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3D point cloud sequences serve as one of the most common and practical representation modalities of real-world environments.
We propose a novel generic representation called textitStructured Point Cloud Videos (SPCVs)
SPCVs re-organizes a point cloud sequence as a 2D video with spatial smoothness and temporal consistency, where the pixel values correspond to the 3D coordinates of points.
arXiv Detail & Related papers (2024-03-02T08:18:57Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
We present a new methodology for real-time semantic mapping from RGB-D sequences.
It combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping.
Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems.
arXiv Detail & Related papers (2023-06-28T22:36:44Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
We propose a Graph Convolution based Spatial Propagation Network (GraphCSPN) as a general approach for depth completion.
In this work, we leverage convolution neural networks as well as graph neural networks in a complementary way for geometric representation learning.
Our method achieves the state-of-the-art performance, especially when compared in the case of using only a few propagation steps.
arXiv Detail & Related papers (2022-10-19T17:56:03Z) - Efficient Geometry-aware 3D Generative Adversarial Networks [50.68436093869381]
Existing 3D GANs are either compute-intensive or make approximations that are not 3D-consistent.
In this work, we improve the computational efficiency and image quality of 3D GANs without overly relying on these approximations.
We introduce an expressive hybrid explicit-implicit network architecture that synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry.
arXiv Detail & Related papers (2021-12-15T08:01:43Z) - Implicit Neural Deformation for Multi-View Face Reconstruction [43.88676778013593]
We present a new method for 3D face reconstruction from multi-view RGB images.
Unlike previous methods which are built upon 3D morphable models, our method leverages an implicit representation to encode rich geometric features.
Our experimental results on several benchmark datasets demonstrate that our approach outperforms alternative baselines and achieves superior face reconstruction results compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-12-05T07:02:53Z) - Subdivision-Based Mesh Convolution Networks [38.09613983540932]
Convolutional neural networks (CNNs) have made great breakthroughs in 2D computer vision.
This paper introduces a novel CNN framework, named SubdivNet, for 3D triangle meshes with Loop subdivision sequence connectivity.
Experiments on mesh classification, segmentation, correspondence, and retrieval from the real-world demonstrate the effectiveness and efficiency of SubdivNet.
arXiv Detail & Related papers (2021-06-04T06:50:34Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
Representation learning for 3D meshes is important in many computer vision and graphics applications.
We propose a local structure-aware anisotropic convolutional operation (LSA-Conv)
Our model produces significant improvement in 3D shape reconstruction compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-04-21T13:40:03Z) - 3D Shape Segmentation with Geometric Deep Learning [2.512827436728378]
We propose a neural-network based approach that produces 3D augmented views of the 3D shape to solve the whole segmentation as sub-segmentation problems.
We validate our approach using 3D shapes of publicly available datasets and of real objects that are reconstructed using photogrammetry techniques.
arXiv Detail & Related papers (2020-02-02T14:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.