論文の概要: Enhance Topics Analysis based on Keywords Properties
- arxiv url: http://arxiv.org/abs/2203.04786v1
- Date: Wed, 9 Mar 2022 15:10:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 21:51:48.618819
- Title: Enhance Topics Analysis based on Keywords Properties
- Title(参考訳): キーワード特性に基づくエンハンストピック分析
- Authors: Antonio Penta
- Abstract要約: 本稿では,最も情報性の高いトピックを選択可能なキーワード特性に基づく特異度スコアを示す。
実験では,最近の文献におけるコヒーレンススコアに基づいて,様々な要因のトピックモデリング結果を,解よりもはるかに低い情報損失で圧縮できることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topic Modelling is one of the most prevalent text analysis technique used to
explore and retrieve collection of documents. The evaluation of the topic model
algorithms is still a very challenging tasks due to the absence of
gold-standard list of topics to compare against for every corpus. In this work,
we present a specificity score based on keywords properties that is able to
select the most informative topics. This approach helps the user to focus on
the most informative topics. In the experiments, we show that we are able to
compress the state-of-the-art topic modelling results of different factors with
an information loss that is much lower than the solution based on the recent
coherence score presented in literature.
- Abstract(参考訳): トピックモデリングは、ドキュメントのコレクションの探索と取得に使用される最も一般的なテキスト分析手法の1つである。
トピックモデルアルゴリズムの評価は、各コーパスに対して比較すべきトピックのゴールドスタンダードリストがないため、依然として非常に難しい課題である。
そこで本研究では,最も有意義なトピックを選択できるキーワード特性に基づく特異度スコアを提案する。
このアプローチは、ユーザが最も有意義なトピックに集中するのに役立つ。
実験では,文献に提示された最近のコヒーレンススコアに基づく解よりもはるかに低い情報損失により,異なる要因のトピックモデリング結果を圧縮できることを示した。
関連論文リスト
- Interactive Topic Models with Optimal Transport [75.26555710661908]
ラベル名監視型トピックモデリングのためのアプローチとして,EdTMを提案する。
EdTMは、LM/LLMベースのドキュメントトピック親和性を活用しながら、代入問題としてのトピックモデリングをモデル化する。
論文 参考訳(メタデータ) (2024-06-28T13:57:27Z) - Prompting Large Language Models for Topic Modeling [10.31712610860913]
大規模言語モデル(LLM)の高度な言語理解を活用する新しいトピックモデリング手法であるPromptTopicを提案する。
個々の文書から文章レベルでトピックを抽出し、これらのトピックを事前定義された量に集約して凝縮し、最終的に様々な長さのテキストに対して一貫性のあるトピックを提供する。
PromptTopicを3つの非常に多様なデータセットの最先端のベースラインに対してベンチマークし、意味のあるトピックを発見する能力を確立しました。
論文 参考訳(メタデータ) (2023-12-15T11:15:05Z) - TopicAdapt- An Inter-Corpora Topics Adaptation Approach [27.450275637652418]
本稿では、関連するソースコーパスから関連するトピックを適応し、ソースコーパスに存在しないターゲットコーパスに新しいトピックを発見できるトピックモデルTopicAdaptを提案する。
多様なドメインからの複数のデータセットに対する実験は、最先端のトピックモデルに対して提案されたモデルの優位性を示している。
論文 参考訳(メタデータ) (2023-10-08T02:56:44Z) - Topics in the Haystack: Extracting and Evaluating Topics beyond
Coherence [0.0]
本稿では,文と文書のテーマを深く理解する手法を提案する。
これにより、一般的な単語やネオロジズムを含む潜在トピックを検出することができる。
本稿では, 侵入者の単語の人間識別と相関係数を示し, 単語侵入作業において, ほぼ人間レベルの結果を得る。
論文 参考訳(メタデータ) (2023-03-30T12:24:25Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
本稿では,事前知識を階層型トピックモデリングに組み込むベイズ生成モデルを提案する。
提案モデルでは,事前知識を効率的に統合し,階層的なトピック発見と文書表現の両面を改善する。
論文 参考訳(メタデータ) (2022-09-20T09:16:05Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z) - Unsupervised Summarization for Chat Logs with Topic-Oriented Ranking and
Context-Aware Auto-Encoders [59.038157066874255]
本稿では,手動ラベル付きデータを用いずにチャット要約を行うrankaeという新しいフレームワークを提案する。
RankAEは、中心性と多様性に応じてトピックの発話を同時に選択するトピック指向のランキング戦略で構成されています。
消音自動エンコーダは、選択された発話に基づいて簡潔でコンテキスト情報に基づいた要約を生成するように設計されています。
論文 参考訳(メタデータ) (2020-12-14T07:31:17Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - BATS: A Spectral Biclustering Approach to Single Document Topic Modeling
and Segmentation [17.003488045214972]
既存のトピックモデリングとテキストセグメンテーションの方法論は一般的に、トレーニングのために大きなデータセットを必要とする。
単一のドキュメントを扱う方法論を開発する際、我々は2つの大きな課題に直面します。
1つのドキュメントのみにアクセスすることで、従来のトピックモデルやディープラーニングアルゴリズムをトレーニングすることはできないのです。
第二に大きなノイズ: 単一の文書にある単語のかなりの部分がノイズのみを生成し、トピックやセグメントの識別に役立ちません。
論文 参考訳(メタデータ) (2020-08-05T16:34:33Z) - Keyword Assisted Topic Models [0.0]
少数のキーワードを提供することで,話題モデルの計測性能を大幅に向上させることができることを示す。
KeyATMは、より解釈可能な結果を提供し、文書分類性能が向上し、標準トピックモデルよりもトピックの数に敏感でない。
論文 参考訳(メタデータ) (2020-04-13T14:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。