論文の概要: A high-precision self-supervised monocular visual odometry in foggy
weather based on robust cycled generative adversarial networks and multi-task
learning aided depth estimation
- arxiv url: http://arxiv.org/abs/2203.04812v1
- Date: Wed, 9 Mar 2022 15:41:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 16:23:57.951751
- Title: A high-precision self-supervised monocular visual odometry in foggy
weather based on robust cycled generative adversarial networks and multi-task
learning aided depth estimation
- Title(参考訳): 強靭な周期生成対向ネットワークとマルチタスク学習支援深度推定に基づく霧気候における高精度自己監督型単眼視覚計測
- Authors: Xiuyuan Li, Jiangang Yu, Fengchao Li, Guowen An
- Abstract要約: 本稿では,霧の天候下でのナビゲーションに特化して設計された,高精度な自己監督型単分子VOを提案する。
サイクル生成対向ネットワークは、前と後ろの半サイクルに一貫した推定を強制することで、高品質な自己監督的損失を得るように設計されている。
霧の天候における自己監督的損失に対する複雑な光度変化の干渉を取り除くため、勾配に基づく損失と知覚的損失が導入された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper proposes a high-precision self-supervised monocular VO, which is
specifically designed for navigation in foggy weather. A cycled generative
adversarial network is designed to obtain high-quality self-supervised loss via
forcing the forward and backward half-cycle to output consistent estimation.
Moreover, gradient-based loss and perceptual loss are introduced to eliminate
the interference of complex photometric change on self-supervised loss in foggy
weather. To solve the ill-posed problem of depth estimation, a self-supervised
multi-task learning aided depth estimation module is designed based on the
strong correlation between the depth estimation and transmission map
calculation of hazy images in foggy weather. The experimental results on the
synthetic foggy KITTI dataset show that the proposed self-supervised monocular
VO performs better in depth and pose estimation than other state-of-the-art
monocular VO in the literature, indicating the designed method is more suitable
for foggy weather.
- Abstract(参考訳): 本稿では,霧の多い天候下での航法用に特別に設計された高精度自己教師付き単眼型voを提案する。
サイクル生成対向ネットワークは、前と後ろの半サイクルに一貫した推定を強制することで高品質な自己監督損失を得るように設計されている。
さらに,霧の天候下での自己監督的損失に対する複雑な光度変化の干渉を取り除くために,勾配に基づく損失と知覚的損失を導入する。
深度推定の問題点を解決するために,霧の天候下での湿地画像の深度推定と送信マップ計算との強い相関関係に基づいて,自己教師付きマルチタスク学習支援深度推定モジュールを設計する。
合成フォギーキッティデータセットを用いた実験の結果,提案する自己教師付き単眼型voは,他の最先端単眼型voよりも奥行きとポーズ推定が良好であることが判明した。
関連論文リスト
- Unsupervised Monocular Depth Estimation Based on Hierarchical Feature-Guided Diffusion [21.939618694037108]
教師なし単分子深度推定は、地上の真実を示さずに訓練できるため、広く注目を集めている。
我々は、教師なし単眼深度推定のために、生成ネットワーク間でよく収束する拡散モデルを用いる。
このモデルは深度分布の学習と解釈の能力を大幅に向上させる。
論文 参考訳(メタデータ) (2024-06-14T07:31:20Z) - The RoboDepth Challenge: Methods and Advancements Towards Robust Depth Estimation [97.63185634482552]
我々は,RoboDepth Challengeの優勝ソリューションを要約する。
この課題は、堅牢なOoD深度推定を容易にし、前進させるように設計された。
この課題が、堅牢で信頼性の高い深度推定に関する将来の研究の基盤となることを願っている。
論文 参考訳(メタデータ) (2023-07-27T17:59:56Z) - Uncertainty Guided Depth Fusion for Spike Camera [49.41822923588663]
スパイクカメラのための単分子およびステレオ深度推定ネットワークの予測を融合させる新しい不確かさ誘導深度融合(UGDF)フレームワークを提案する。
我々のフレームワークは、ステレオスパイク深さ推定がより近い範囲でより良い結果をもたらすという事実に動機づけられている。
従来のカメラ深度推定よりもスパイク深度推定の利点を示すため、我々はCitySpike20Kというスパイク深度データセットに貢献する。
論文 参考訳(メタデータ) (2022-08-26T13:04:01Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
本研究では,単眼深度推定器SC-Depthを提案する。
スケール一貫性予測の能力により,我々の単分子学習深層ネットワークは簡単にORB-SLAM2システムに統合可能であることを示す。
提案したハイブリッドPseudo-RGBD SLAMは、KITTIにおいて魅力的な結果を示し、追加のトレーニングなしでKAISTデータセットにうまく一般化する。
論文 参考訳(メタデータ) (2021-05-25T02:17:56Z) - Progressive Depth Learning for Single Image Dehazing [56.71963910162241]
既存の脱湿法は、しばしば深度を無視し、より重いヘイズが視界を乱す遠くの地域で失敗する。
画像深度と伝送マップを反復的に推定するディープエンドツーエンドモデルを提案する。
私たちのアプローチは、画像深度と伝送マップの内部関係を明示的にモデリングすることから利益を得ます。
論文 参考訳(メタデータ) (2021-02-21T05:24:18Z) - Unsupervised Deep Persistent Monocular Visual Odometry and Depth
Estimation in Extreme Environments [7.197188771058501]
教師なしの深層学習アプローチは、未ラベルの単分子画像列から深度と視覚計測(VO)を推定するために大きな注目を集めている。
そこで本稿では,RGB画像列からカメラの6自由度ポーズとシーンの深度マップを予測する,教師なし単眼深度VOフレームワークを提案する。
提案手法は, 従来の非教師付き深度VO法と非教師付き深度VO法の両方より優れ, ポーズ推定と深度回復の両面で良好な結果が得られる。
論文 参考訳(メタデータ) (2020-10-31T19:10:27Z) - SAFENet: Self-Supervised Monocular Depth Estimation with Semantic-Aware
Feature Extraction [27.750031877854717]
本稿では,セマンティック情報を活用して光度損失の限界を克服するSAFENetを提案する。
私たちのキーとなるアイデアは、意味的知識と幾何学的知識を統合するセマンティック・アウェア・ディープ機能を活用することです。
KITTIデータセットの実験では、我々の手法が最先端の手法と競合するか、さらに優れています。
論文 参考訳(メタデータ) (2020-10-06T17:22:25Z) - Adaptive confidence thresholding for monocular depth estimation [83.06265443599521]
本稿では,自己教師付ステレオマッチング法から生成されたステレオ画像の擬似地上真実深度マップを利用する新しい手法を提案する。
擬似地底深度マップの信頼度マップを推定し、不正確な擬似地底深度マップによる性能劣化を緩和する。
実験結果から, 最先端の単分子深度推定法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-09-27T13:26:16Z) - D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual
Odometry [57.5549733585324]
D3VOは、深度、ポーズ、不確実性推定という3つのレベルでディープネットワークを利用する、単眼の視覚計測のための新しいフレームワークである。
まず,ステレオビデオを用いた自己監督型単眼深度推定ネットワークを提案する。
入力画像上の画素の光度不確かさをモデル化し、深度推定精度を向上させる。
論文 参考訳(メタデータ) (2020-03-02T17:47:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。