Individual qubit addressing of rotating ion crystals in a Penning trap
- URL: http://arxiv.org/abs/2203.05196v2
- Date: Sat, 30 Apr 2022 22:32:50 GMT
- Title: Individual qubit addressing of rotating ion crystals in a Penning trap
- Authors: Anthony M. Polloreno, Ana Maria Rey, John J. Bollinger
- Abstract summary: Trapped ions boast long coherence times and excellent gate fidelities, making them a useful platform for quantum information processing.
We propose a protocol that takes advantage of a deformable mirror to introduce AC Stark shift patterns that are static in the rotating frame of the crystal.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trapped ions boast long coherence times and excellent gate fidelities, making
them a useful platform for quantum information processing. Scaling to larger
numbers of ion qubits in RF Paul traps demands great effort. Another technique
for trapping ions is via a Penning trap where a 2D crystal of hundreds of ions
is formed by controlling the rotation of the ions in the presence of a strong
magnetic field. However, the rotation of the ion crystal makes single ion
addressability a significant challenge. We propose a protocol that takes
advantage of a deformable mirror to introduce AC Stark shift patterns that are
static in the rotating frame of the crystal. Through numerical simulations we
validate the potential of this protocol to perform high-fidelity single-ion
gates in crystalline arrays of hundreds of ions.
Related papers
- Individually Addressed Entangling Gates in a Two-Dimensional Ion Crystal [0.19165511108619063]
We demonstrate high-fidelity two-qubit entangling gates between any ion pairs in a 2D crystal of four ions.
Our work paves the way for ion trap quantum computing with hundreds to thousands of qubits on a 2D ion crystal.
arXiv Detail & Related papers (2024-06-20T05:01:42Z) - Fast design and scaling of multi-qubit gates in large-scale trapped-ion
quantum computers [0.0]
Quantum computers based on crystals of trapped ions are a prominent technology for quantum computation.
Here we introduce a method that vastly reduces the computational challenge, effectively allowing for the design of fast and programmable entanglement gates.
Our method delineates a path towards scaling up quantum computers based on ion-crystals with 100s of qubits.
arXiv Detail & Related papers (2023-07-14T21:01:14Z) - Controlling two-dimensional Coulomb crystals of more than 100 ions in a
monolithic radio-frequency trap [0.0]
We present experiments with planar Coulomb crystals of about 100 $40$Ca$+$ ions in a novel monolithic radio-frequency trap.
We characterize the trapping potential by analysis of crystal images and compare the observed crystal configurations with numerical simulations.
arXiv Detail & Related papers (2023-02-01T16:38:11Z) - Near-Surface Electrical Characterisation of Silicon Electronic Devices
Using Focused keV Ions [45.82374977939355]
We show how to implant low-energy ions into silicon devices featuring an enlarged 60x60 $mu$m sensitive area.
Despite the weak internal electric field, near-unity charge collection efficiency is obtained from the entire sensitive area.
This can be explained by the critical role that the high-quality thermal gate oxide plays in the ion detection response.
arXiv Detail & Related papers (2022-01-27T06:29:46Z) - Coherent effects contribution to a fast gate fidelity in ion quantum
computer [47.187609203210705]
We develop a numerical model for full simulation of coherence effects using a linear ion microtrap array and a 2D microtrap array.
We have also studied the dependency of the gate fidelity on the laser power fluctuations.
arXiv Detail & Related papers (2021-12-12T12:53:00Z) - Trapped Ion Quantum Computing using Optical Tweezers and Electric Fields [0.0]
We propose a new architecture for trapped ion quantum computing that combines optical tweezers delivering qubit state-dependent local potentials with oscillating electric fields.
Since the electric field allows for long-range qubit-qubit interactions mediated by the center-of-mass motion of the ion crystal alone, it is inherently scalable to large ion crystals.
arXiv Detail & Related papers (2021-06-14T15:16:16Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Trapping, Shaping and Isolating of Ion Coulomb Crystals via
State-selective Optical Potentials [55.41644538483948]
In conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent on their charge-to-mass ratio $Q/m$.
Here we experimentally study optical dipole potentials for $138mathrmBa+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm.
arXiv Detail & Related papers (2020-10-26T14:36:48Z) - High Fidelity Entangling Gates in a 3D Ion Crystal under Micromotion [0.0]
We develop an efficient numerical method to design high-fidelity entangling gates in a general 3D ion crystal.
We show a high-fidelity entangling gate design between two ions in a 100-ion crystal, with a theoretical fidelity of 99.9%.
arXiv Detail & Related papers (2020-09-28T01:33:31Z) - Ancilla mediated qubit readout and heralded entanglement between
rare-earth dopant ions in crystals [68.8204255655161]
We show how a Bayesian analysis exhausts the information about the state of the qubit from the optical signal of the ancilla ion.
We extend the architecture to ions residing in two remote cavities, and we show how continuous monitoring of fluorescence signals from the two ancilla ions leads to entanglement of the qubit ions.
arXiv Detail & Related papers (2020-07-06T16:31:46Z) - Fast entangling gates in long ion chains [62.997667081978825]
We present a model for implementing fast entangling gates with ultra-fast pulses in arbitrarily long ion chains.
We find that achievable gate fidelity is independent of the number of ions in the chain.
We find that population transfer efficiencies of above $99.9%$ from individual ultra-fast pulses is the threshold for realising high-fidelity gates.
arXiv Detail & Related papers (2020-04-09T05:32:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.