Trapped Ion Quantum Computing using Optical Tweezers and Electric Fields
- URL: http://arxiv.org/abs/2106.07486v1
- Date: Mon, 14 Jun 2021 15:16:16 GMT
- Title: Trapped Ion Quantum Computing using Optical Tweezers and Electric Fields
- Authors: M. Mazzanti, R. X. Sch\"ussler, J. D. Arias Espinoza, Z. Wu, R.
Gerritsma and A. Safavi-Naini
- Abstract summary: We propose a new architecture for trapped ion quantum computing that combines optical tweezers delivering qubit state-dependent local potentials with oscillating electric fields.
Since the electric field allows for long-range qubit-qubit interactions mediated by the center-of-mass motion of the ion crystal alone, it is inherently scalable to large ion crystals.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new scalable architecture for trapped ion quantum computing that
combines optical tweezers delivering qubit state-dependent local potentials
with oscillating electric fields. Since the electric field allows for
long-range qubit-qubit interactions mediated by the center-of-mass motion of
the ion crystal alone, it is inherently scalable to large ion crystals.
Furthermore, our proposed scheme does not rely on either ground state cooling
or the Lamb-Dicke approximation. We study the effects of imperfect cooling of
the ion crystal, as well as the role of unwanted qubit-motion entanglement, and
discuss the prospects of implementing the state-dependent tweezers in the
laboratory.
Related papers
- Scalable architecture for trapped-ion quantum computing using RF traps and dynamic optical potentials [0.0]
In principle there is no fundamental limit to the number of ion-based qubits that can be confined in a single 1D register.
Here we propose a holistic, scalable architecture for quantum computing with large ion-crystals.
We show that these cells behave as nearly independent quantum registers, allowing for parallel entangling gates on all cells.
arXiv Detail & Related papers (2023-11-02T12:06:49Z) - Trapped Ions as an Architecture for Quantum Computing [110.83289076967895]
We describe one of the most promising platforms for the construction of a universal quantum computer.
We discuss from the physics involved in trapping ions in electromagnetic potentials to the Hamiltonian engineering needed to generate a universal set of logic gates.
arXiv Detail & Related papers (2022-07-23T22:58:50Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Evaluating states in trapped ions with local correlation between
internal and motional degrees of freedom [0.0]
We propose and demonstrate a scalable scheme for the simultaneous determination of internal and motional states in trapped ions with single-site resolution.
The scheme is applied to the study of polaritonic excitations in the Jaynes- Cummings Hubbard model with trapped ions.
arXiv Detail & Related papers (2021-05-11T03:48:35Z) - Engineering spin-spin interactions with optical tweezers in trapped ions [0.0]
We consider the use of optical tweezers to engineer the sound-wave spectrum of trapped ion crystals.
We show that this approach allows us to tune the interactions and connectivity of the ion qubits beyond the power-law interactions.
arXiv Detail & Related papers (2021-03-18T17:58:00Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Manipulating phonons of a trapped-ion system using optical tweezers [0.0]
An array of optical tweezers affords site-dependent control over a conventional radio-frequency ion trap.
We describe protocols for programming the array of optical tweezers to attain a set of target phonon modes with high accuracy.
Our scheme extends the utility of trapped-ions as a platform for quantum computation and simulation.
arXiv Detail & Related papers (2021-03-04T19:14:54Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Trapping, Shaping and Isolating of Ion Coulomb Crystals via
State-selective Optical Potentials [55.41644538483948]
In conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent on their charge-to-mass ratio $Q/m$.
Here we experimentally study optical dipole potentials for $138mathrmBa+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm.
arXiv Detail & Related papers (2020-10-26T14:36:48Z) - Ancilla mediated qubit readout and heralded entanglement between
rare-earth dopant ions in crystals [68.8204255655161]
We show how a Bayesian analysis exhausts the information about the state of the qubit from the optical signal of the ancilla ion.
We extend the architecture to ions residing in two remote cavities, and we show how continuous monitoring of fluorescence signals from the two ancilla ions leads to entanglement of the qubit ions.
arXiv Detail & Related papers (2020-07-06T16:31:46Z) - Quantum simulation of extended polaron models using compound atom-ion
systems [0.0]
We consider the prospects for quantum simulation of condensed matter models exhibiting strong electron-phonon coupling.
We derive the effective Hamiltonian describing the general system and discuss the arising energy scales.
Although for a typical experimentally realistic system the coupling to phonons turns out to be small, we provide the means to enhance its role.
arXiv Detail & Related papers (2020-05-18T12:18:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.