Cyber security and the Leviathan
- URL: http://arxiv.org/abs/2203.05256v1
- Date: Thu, 10 Mar 2022 09:35:36 GMT
- Title: Cyber security and the Leviathan
- Authors: Joseph Da Silva
- Abstract summary: We show that the work of political philosopher Thomas Hobbes, particularly Leviathan, offers a useful lens through which to understand the context of these functions and of cyber security in Western society.
Our findings indicate that cyber security within these businesses demonstrates a number of Hobbesian features that are further implicated in, and provide significant benefits to, the wider Leviathan-esque state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dedicated cyber-security functions are common in commercial businesses, who
are confronted by evolving and pervasive threats of data breaches and other
perilous security events. Such businesses are enmeshed with the wider societies
in which they operate. Using data gathered from in-depth, semi-structured
interviews with 15 Chief Information Security Officers, as well as six senior
organisational leaders, we show that the work of political philosopher Thomas
Hobbes, particularly Leviathan, offers a useful lens through which to
understand the context of these functions and of cyber security in Western
society. Our findings indicate that cyber security within these businesses
demonstrates a number of Hobbesian features that are further implicated in, and
provide significant benefits to, the wider Leviathan-esque state. These include
the normalisation of intrusive controls, such as surveillance, and the
stimulation of consumption. We conclude by suggesting implications for
cyber-security practitioners, in particular, the reflexivity that these
perspectives offer, as well as for businesses and other researchers.
Related papers
- Cybersecurity Challenge Analysis of Work-from-Anywhere (WFA) and Recommendations guided by a User Study [1.1749564892273827]
Many organizations were forced to quickly transition to the work-from-anywhere (WFA) model as a necessity to continue with their operations and remain in business despite the restrictions imposed during the COVID-19 pandemic.
This paper attempts to uncover some challenges and implications related to the cybersecurity of the WFA model.
We conducted an online user study to investigate the readiness and cybersecurity awareness of employers and their employees who shifted to work remotely from anywhere.
arXiv Detail & Related papers (2024-09-11T18:47:04Z) - Cross-Modality Safety Alignment [73.8765529028288]
We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment.
To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations.
Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
arXiv Detail & Related papers (2024-06-21T16:14:15Z) - Security in IS and social engineering -- an overview and state of the art [0.6345523830122166]
The digitization of all processes and the opening to IoT devices has fostered the emergence of a new formof crime, i.e. cybercrime.
The maliciousness of such attacks lies in the fact that they turn users into facilitators of cyber-attacks, to the point of being perceived as the weak link'' of cybersecurity.
Knowing how to anticipate, identifying weak signals and outliers, detect early and react quickly to computer crime are therefore priority issues requiring a prevention and cooperation approach.
arXiv Detail & Related papers (2024-06-17T13:25:27Z) - Linkage on Security, Privacy and Fairness in Federated Learning: New Balances and New Perspectives [48.48294460952039]
This survey offers comprehensive descriptions of the privacy, security, and fairness issues in federated learning.
We contend that there exists a trade-off between privacy and fairness and between security and sharing.
arXiv Detail & Related papers (2024-06-16T10:31:45Z) - PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety [70.84902425123406]
Multi-agent systems, when enhanced with Large Language Models (LLMs), exhibit profound capabilities in collective intelligence.
However, the potential misuse of this intelligence for malicious purposes presents significant risks.
We propose a framework (PsySafe) grounded in agent psychology, focusing on identifying how dark personality traits in agents can lead to risky behaviors.
Our experiments reveal several intriguing phenomena, such as the collective dangerous behaviors among agents, agents' self-reflection when engaging in dangerous behavior, and the correlation between agents' psychological assessments and dangerous behaviors.
arXiv Detail & Related papers (2024-01-22T12:11:55Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
We analyze the current privacy attacks targeting large language models (LLMs) and categorize them according to the adversary's assumed capabilities.
We present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks.
arXiv Detail & Related papers (2023-10-16T13:23:54Z) - Critical Analysis and Countermeasures Tactics, Techniques and Procedures (TTPs) that targeting civilians: A case study On Pegasus [0.0]
This paper investigates the targeting of journalists and activists by the malware Pegasus.
Examines the far-reaching consequences of these attacks for cybersecurity policy.
Describes some of the most important tactics that businesses may use to reduce the danger of cyberattacks.
arXiv Detail & Related papers (2023-10-01T19:28:03Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Global Pandemics Influence on Cyber Security and Cyber Crimes [5.8010446129208155]
COVID-19 has caused widespread damage across many areas of life and has made humans more dependent on the internet and technology.
This paper examines the different types of security threats and cyber crimes that people faced in the pandemic time and the need for a safe and secure cyber infrastructure.
arXiv Detail & Related papers (2023-02-24T05:26:42Z) - 'Cyber security is a dark art': The CISO as soothsayer [12.246860992135783]
Commercial organisations continue to face a growing and evolving threat of data breaches and system compromises.
Many organisations employ a Chief Information Security Officer (CISO) to lead such a function.
We conducted in-depth, semi-structured interviews with 15 CISOs and six senior organisational leaders.
arXiv Detail & Related papers (2022-02-25T15:21:29Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.