Graph Mining for Cybersecurity: A Survey
- URL: http://arxiv.org/abs/2304.00485v2
- Date: Mon, 16 Oct 2023 09:42:16 GMT
- Title: Graph Mining for Cybersecurity: A Survey
- Authors: Bo Yan, Cheng Yang, Chuan Shi, Yong Fang, Qi Li, Yanfang Ye, Junping
Du
- Abstract summary: The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
- Score: 61.505995908021525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The explosive growth of cyber attacks nowadays, such as malware, spam, and
intrusions, caused severe consequences on society. Securing cyberspace has
become an utmost concern for organizations and governments. Traditional Machine
Learning (ML) based methods are extensively used in detecting cyber threats,
but they hardly model the correlations between real-world cyber entities. In
recent years, with the proliferation of graph mining techniques, many
researchers investigated these techniques for capturing correlations between
cyber entities and achieving high performance. It is imperative to summarize
existing graph-based cybersecurity solutions to provide a guide for future
studies. Therefore, as a key contribution of this paper, we provide a
comprehensive review of graph mining for cybersecurity, including an overview
of cybersecurity tasks, the typical graph mining techniques, and the general
process of applying them to cybersecurity, as well as various solutions for
different cybersecurity tasks. For each task, we probe into relevant methods
and highlight the graph types, graph approaches, and task levels in their
modeling. Furthermore, we collect open datasets and toolkits for graph-based
cybersecurity. Finally, we outlook the potential directions of this field for
future research.
Related papers
- Safety in Graph Machine Learning: Threats and Safeguards [84.26643884225834]
Despite their societal benefits, recent research highlights significant safety concerns associated with the widespread use of Graph ML models.
Lacking safety-focused designs, these models can produce unreliable predictions, demonstrate poor generalizability, and compromise data confidentiality.
In high-stakes scenarios such as financial fraud detection, these vulnerabilities could jeopardize both individuals and society at large.
arXiv Detail & Related papers (2024-05-17T18:11:11Z) - Use of Graph Neural Networks in Aiding Defensive Cyber Operations [2.1874189959020427]
Graph Neural Networks have emerged as a promising approach for enhancing the effectiveness of defensive measures.
We look into the application of GNNs in aiding to break each stage of one of the most renowned attack life cycles, the Lockheed Martin Cyber Kill Chain.
arXiv Detail & Related papers (2024-01-11T05:56:29Z) - Stepping out of Flatland: Discovering Behavior Patterns as Topological Structures in Cyber Hypergraphs [0.7835894511242797]
We present a novel framework based in the theory of hypergraphs and topology to understand data from cyber networks.
We will demonstrate concrete examples in a large-scale cyber network dataset.
arXiv Detail & Related papers (2023-11-08T00:00:33Z) - GraphCloak: Safeguarding Task-specific Knowledge within Graph-structured Data from Unauthorized Exploitation [61.80017550099027]
Graph Neural Networks (GNNs) are increasingly prevalent in a variety of fields.
Growing concerns have emerged regarding the unauthorized utilization of personal data.
Recent studies have shown that imperceptible poisoning attacks are an effective method of protecting image data from such misuse.
This paper introduces GraphCloak to safeguard against the unauthorized usage of graph data.
arXiv Detail & Related papers (2023-10-11T00:50:55Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
We focus on reviewing privacy-preserving techniques of graph machine learning.
We first review methods for generating privacy-preserving graph data.
Then we describe methods for transmitting privacy-preserved information.
arXiv Detail & Related papers (2023-07-10T04:30:23Z) - Recent Advancements in Machine Learning For Cybercrime Prediction [2.38324507743994]
This paper aims to comprehensively survey the latest advancements in cybercrime prediction.
We reviewed more than 150 research articles and discussed 50 most recent and appropriate ones.
This paper presents a holistic view of cutting-edge developments and publicly available datasets.
arXiv Detail & Related papers (2023-04-10T19:00:29Z) - Ensemble learning techniques for intrusion detection system in the
context of cybersecurity [0.0]
Intrusion Detection System concept was used with the application of the Data Mining and Machine Learning Orange tool to obtain better results.
The main objective of the study was to investigate the Ensemble Learning technique using the Stacking method, supported by the Support Vector Machine (SVM) and kNearest Neighbour (kNN) algorithms.
arXiv Detail & Related papers (2022-12-21T10:50:54Z) - Review: Deep Learning Methods for Cybersecurity and Intrusion Detection
Systems [6.459380657702644]
Artificial Intelligence (AI) and Machine Learning (ML) can be leveraged as key enabling technologies for cyber-defense.
In this paper, we are concerned with the investigation of the various deep learning techniques employed for network intrusion detection.
arXiv Detail & Related papers (2020-12-04T23:09:35Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.