論文の概要: 6-DoF Pose Estimation of Household Objects for Robotic Manipulation: An
Accessible Dataset and Benchmark
- arxiv url: http://arxiv.org/abs/2203.05701v1
- Date: Fri, 11 Mar 2022 01:19:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-14 13:50:21.109387
- Title: 6-DoF Pose Estimation of Household Objects for Robotic Manipulation: An
Accessible Dataset and Benchmark
- Title(参考訳): 6-DoFによるロボットマニピュレーションのための家庭用物体の推定:アクセシブルデータセットとベンチマーク
- Authors: Stephen Tyree, Jonathan Tremblay, Thang To, Jia Cheng, Terry Mosier,
Jeffrey Smith, Stan Birchfield
- Abstract要約: 本稿では,ロボット操作研究を中心に,既知の物体の6-DoFポーズ推定のための新しいデータセットを提案する。
我々は、おもちゃの食料品の3Dスキャンされたテクスチャモデルと、難解で散らかったシーンにおけるオブジェクトのRGBD画像を提供する。
半自動RGBD-to-modelテクスチャ対応を用いて、画像は数ミリ以内の精度で実証された地上の真実のポーズで注釈付けされる。
また,ADD-Hと呼ばれる新しいポーズ評価尺度を提案し,対象形状の対称性に頑健なハンガリー代入アルゴリズムについて,その明示的な列挙を必要とせず提案する。
- 参考スコア(独自算出の注目度): 17.493403705281008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new dataset for 6-DoF pose estimation of known objects, with a
focus on robotic manipulation research. We propose a set of toy grocery
objects, whose physical instantiations are readily available for purchase and
are appropriately sized for robotic grasping and manipulation. We provide 3D
scanned textured models of these objects, suitable for generating synthetic
training data, as well as RGBD images of the objects in challenging, cluttered
scenes exhibiting partial occlusion, extreme lighting variations, multiple
instances per image, and a large variety of poses. Using semi-automated
RGBD-to-model texture correspondences, the images are annotated with ground
truth poses that were verified empirically to be accurate to within a few
millimeters. We also propose a new pose evaluation metric called {ADD-H} based
upon the Hungarian assignment algorithm that is robust to symmetries in object
geometry without requiring their explicit enumeration. We share pre-trained
pose estimators for all the toy grocery objects, along with their baseline
performance on both validation and test sets. We offer this dataset to the
community to help connect the efforts of computer vision researchers with the
needs of roboticists.
- Abstract(参考訳): 本稿では,ロボット操作研究を中心に,既知の物体の6-DoFポーズ推定のための新しいデータセットを提案する。
そこで我々は,ロボットの握りと操作に適したサイズで,物理的インスタンス化が容易に購入できる玩具食料品のセットを提案する。
これらの物体の3dスキャンされたテクスチャモデルを提供し,合成トレーニングデータを生成するのに好適であり,また,部分的閉塞,極端な照明変動,画像当たりの複数のインスタンス,多種多様なポーズを呈する煩雑なシーンにおいて,物体のrgbd画像を生成する。
半自動RGBD-to-modelテクスチャ対応を用いて、画像は数ミリ以内の精度で実証された地上の真実のポーズで注釈付けされる。
また, 明示的な列挙を必要とせず, 物体幾何の対称性に頑健なハンガリー割当てアルゴリズムに基づいて, 新たなポーズ評価指標 {add-h} を提案する。
私たちは、すべてのtoy groceryオブジェクトの事前トレーニング済みポーズ推定子と、検証とテストセットのベースラインパフォーマンスを共有しています。
私たちはこのデータセットをコミュニティに提供し、コンピュータビジョン研究者の努力とロボット工学者のニーズを結びつける手助けをします。
関連論文リスト
- 3D Foundation Models Enable Simultaneous Geometry and Pose Estimation of Grasped Objects [13.58353565350936]
本研究では,ロボットが把握した物体の形状と姿勢を共同で推定する手法を提案する。
提案手法は,推定幾何をロボットの座標フレームに変換する。
我々は,実世界の多様な物体の集合を保持するロボットマニピュレータに対する我々のアプローチを実証的に評価した。
論文 参考訳(メタデータ) (2024-07-14T21:02:55Z) - ManiPose: A Comprehensive Benchmark for Pose-aware Object Manipulation in Robotics [55.85916671269219]
本稿では,ポーズ変動操作タスクの研究を進めるための先駆的ベンチマークであるManiPoseを紹介する。
包括的データセットは、2936の現実世界のスキャンされた剛体オブジェクトと100の明瞭なオブジェクトに対して、幾何学的に一貫性があり、操作指向の6Dポーズラベルを備えている。
本ベンチマークは,ポーズ推定,ポーズ認識操作,実ロボットのスキル伝達における顕著な進歩を示す。
論文 参考訳(メタデータ) (2024-03-20T07:48:32Z) - Fit-NGP: Fitting Object Models to Neural Graphics Primitives [19.513102875891775]
本研究では, 高精度なポーズ推定法として, 最先端の高効率放射場再構成法によって生成された密度場が適していることを示す。
本稿では,手首にカメラを装着したロボットアームを用いた完全自動ポーズ推定システムを提案する。
論文 参考訳(メタデータ) (2024-01-04T16:57:56Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
本稿では,3次元視覚タスクにおける現在のデータセットの限界について,精度,サイズ,リアリズム,および光度に挑戦する対象に対する適切な画像モダリティの観点から検討する。
既存の3次元認識と6次元オブジェクトポーズデータセットを強化する新しいアノテーションと取得パイプラインを提案する。
論文 参考訳(メタデータ) (2023-08-21T10:38:32Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPoseは、トレーニング中に見えない新しいオブジェクトの6Dポーズを推定する方法である。
本稿では,新しいオブジェクトに適用可能なR&Compare戦略に基づく6次元ポーズリファインダを提案する。
第2に,合成レンダリングと同一物体の観察画像間のポーズ誤差をリファインダで補正できるか否かを分類するために訓練されたネットワークを利用する,粗いポーズ推定のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-12-13T19:30:03Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
本稿では,新しい物体の6次元ポーズ推定をアルゴリズムで行えるようにするための新しいタスクを提案する。
実画像と合成画像の両方でデータセットを収集し、テストセットで最大48個の未確認オブジェクトを収集する。
エンド・ツー・エンドの3D対応ネットワークをトレーニングすることにより、未確認物体と部分ビューRGBD画像との対応点を高精度かつ効率的に見つけることができる。
論文 参考訳(メタデータ) (2022-06-23T16:29:53Z) - Supervised Training of Dense Object Nets using Optimal Descriptors for
Industrial Robotic Applications [57.87136703404356]
Florence、Manuelli、TedrakeによるDense Object Nets(DON)は、ロボットコミュニティのための新しいビジュアルオブジェクト表現として高密度オブジェクト記述子を導入した。
本稿では, 物体の3次元モデルを考えると, 記述子空間画像を生成することができ, DON の教師付きトレーニングが可能であることを示す。
産業用物体の6次元グリップ生成のためのトレーニング手法を比較し,新しい教師付きトレーニング手法により,産業関連タスクのピック・アンド・プレイス性能が向上することを示す。
論文 参考訳(メタデータ) (2021-02-16T11:40:12Z) - Nothing But Geometric Constraints: A Model-Free Method for Articulated
Object Pose Estimation [89.82169646672872]
本稿では,ロボットアームの関節構成を,モデルに先入観を持たずにRGBまたはRGB-D画像のシーケンスから推定する,教師なし視覚ベースシステムを提案する。
我々は,古典幾何学的定式化と深層学習を組み合わせることで,この課題を解決するために,極性多剛体制約を拡張した。
論文 参考訳(メタデータ) (2020-11-30T20:46:48Z) - MoreFusion: Multi-object Reasoning for 6D Pose Estimation from
Volumetric Fusion [19.034317851914725]
本稿では,複数の既知の物体の接触と隠蔽の正確なポーズを,リアルタイムな多視点視から推定するシステムを提案する。
提案手法は,1枚のRGB-Dビューからの3Dオブジェクトのポーズ提案を行い,カメラが移動すると,複数のビューからのポーズ推定と非パラメトリック占有情報を蓄積する。
提案手法の精度とロバスト性を2つのオブジェクトデータセット(YCB-Video)で実験的に検証する。
論文 参考訳(メタデータ) (2020-04-09T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。