Evaluating U-net Brain Extraction for Multi-site and Longitudinal
Preclinical Stroke Imaging
- URL: http://arxiv.org/abs/2203.05716v1
- Date: Fri, 11 Mar 2022 02:00:27 GMT
- Title: Evaluating U-net Brain Extraction for Multi-site and Longitudinal
Preclinical Stroke Imaging
- Authors: Erendiz Tarakci, Joseph Mandeville, Fahmeed Hyder, Basavaraju G.
Sanganahalli, Daniel R. Thedens, Ali Arbab, Shuning Huang, Adnan Bibic,
Jelena Mihailovic, Andreia Morais, Jessica Lamb, Karisma Nagarkatti, Marcio
A. Dinitz, Andre Rogatko, Arthur W. Toga, Patrick Lyden, Cenk Ayata, Ryan P.
Cabeen
- Abstract summary: Convolutional neural networks (CNNs) can improve accuracy and reduce operator time.
We developed a deep-learning mouse brain extraction tool by using a U-net CNN.
We trained, validated, and tested a typical U-net model on 240 multimodal MRI datasets.
- Score: 0.4310985013483366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rodent stroke models are important for evaluating treatments and
understanding the pathophysiology and behavioral changes of brain ischemia, and
magnetic resonance imaging (MRI) is a valuable tool for measuring outcome in
preclinical studies. Brain extraction is an essential first step in most
neuroimaging pipelines; however, it can be challenging in the presence of
severe pathology and when dataset quality is highly variable. Convolutional
neural networks (CNNs) can improve accuracy and reduce operator time,
facilitating high throughput preclinical studies. As part of an ongoing
preclinical stroke imaging study, we developed a deep-learning mouse brain
extraction tool by using a U-net CNN. While previous studies have evaluated
U-net architectures, we sought to evaluate their practical performance across
data types. We ask how performance is affected with data across: six imaging
centers, two time points after experimental stroke, and across four MRI
contrasts. We trained, validated, and tested a typical U-net model on 240
multimodal MRI datasets including quantitative multi-echo T2 and apparent
diffusivity coefficient (ADC) maps, and performed qualitative evaluation with a
large preclinical stroke database (N=1,368). We describe the design and
development of this system, and report our findings linking data
characteristics to segmentation performance. We consistently found high
accuracy and ability of the U-net architecture to generalize performance in a
range of 95-97% accuracy, with only modest reductions in performance based on
lower fidelity imaging hardware and brain pathology. This work can help inform
the design of future preclinical rodent imaging studies and improve their
scalability and reliability.
Related papers
- fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Predicting recovery following stroke: deep learning, multimodal data and
feature selection using explainable AI [3.797471910783104]
Major challenges include the very high dimensionality of neuroimaging data and the relatively small size of the datasets available for learning.
We introduce a novel approach of training a convolutional neural network (CNN) on images that combine regions-of-interest extracted from MRIs.
We conclude by proposing how the current models could be improved to achieve even higher levels of accuracy using images from hospital scanners.
arXiv Detail & Related papers (2023-10-29T22:31:20Z) - Efficiently Training Vision Transformers on Structural MRI Scans for
Alzheimer's Disease Detection [2.359557447960552]
Vision transformers (ViT) have emerged in recent years as an alternative to CNNs for several computer vision applications.
We tested variants of the ViT architecture for a range of desired neuroimaging downstream tasks based on difficulty.
We achieved a performance boost of 5% and 9-10% upon fine-tuning vision transformer models pre-trained on synthetic and real MRI scans.
arXiv Detail & Related papers (2023-03-14T20:18:12Z) - SF2Former: Amyotrophic Lateral Sclerosis Identification From
Multi-center MRI Data Using Spatial and Frequency Fusion Transformer [3.408266725482757]
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder involving motor neuron degeneration.
Deep learning has turned into a prominent class of machine learning programs in computer vision.
This study introduces a framework named SF2Former that leverages vision transformer architecture's power to distinguish the ALS subjects from the control group.
arXiv Detail & Related papers (2023-02-21T18:16:20Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
A novel deep learning method is proposed for fast and accurate segmentation of the human brain into 132 regions.
The proposed model uses an efficient U-Net-like network and benefits from the intersection points of different views and hierarchical relations.
The proposed method can be applied to brain MRI data including skull or any other artifacts without preprocessing the images or a drop in performance.
arXiv Detail & Related papers (2022-08-30T16:06:07Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Functional Magnetic Resonance Imaging data augmentation through
conditional ICA [44.483210864902304]
We introduce Conditional Independent Components Analysis (Conditional ICA): a fast functional Magnetic Resonance Imaging (fMRI) data augmentation technique.
We show that Conditional ICA is successful at synthesizing data indistinguishable from observations, and that it yields gains in classification accuracy in brain decoding problems.
arXiv Detail & Related papers (2021-07-11T22:36:14Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Comparison of Convolutional neural network training parameters for
detecting Alzheimers disease and effect on visualization [0.0]
Convolutional neural networks (CNN) have become a powerful tool for detecting patterns in image data.
Despite the high accuracy obtained from CNN models for MRI data so far, almost no papers provided information on the features or image regions driving this accuracy.
arXiv Detail & Related papers (2020-08-18T15:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.